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CAFOs Concentrated Animal Feeding Operations.
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SwAV Swapping Assignments between Views.
UOT Unbalanced Optimal Transport.
VAE Variational Auto-Encoder.
ViT Vision Transformer.
WCE Weighted Cross-Entropy.
WWT Waste Water Treatment.

Notations

T ∼ T T is a sample drawn from distribution T .
TpM Tangent space at point p of manifold M.
U(a, b) Set of couplings with marginals a and b, respectively.
δx Dirac measure at x.
expp(·) Exponential map at point p.
∥·∥ Euclidean norm.
∥·∥⋆ Nuclear norm.
⟨·, ·⟩ Euclidean inner product.
⟨·, ·⟩F Frobenius inner product.
Sd Unit-hypersphere of d dimensions.
Hc

d Hyperbolic space of d dimensions and of curvature c.
1{·} Indicator function.
cat(x1, . . . , xn) Concatenation operator.
{1, . . . , N} Set of natural numbers included in the interval [1, N ].
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Chapter 1

INTRODUCTION

Contents
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Overview of Contributions . . . . . . . . . . . . . . . . . . . . . 15

1.1 Motivations

While vision appears as a natural process for humans, computers have no inherent notion
of image understanding. In computers, images are generally represented as matrices of
pixels with an extra dimension if multiple channels are present. This representation
may be convenient for some image analyses but is mainly driven by the nature of image
capture sensors which are positioned in a grid pattern. As such, computer programs have
no straightforward way to reason about the visual nature of objects and items present in
an image. Therefore, the computer vision research community has developed techniques
to help computers perform better image analyses and classification by teaching computers
to learn better representations than the baseline pixel grids.

The importance of learning representations in computer vision cannot be overstated.
Traditional hand-crafted features, which were once the cornerstone of computer vision,
have been largely surpassed by learned representations, which offer greater flexibility,
adaptability, and performance. The rise in popularity of deep learning techniques has
further solidified the significance of learned representations, enabling models to learn
complex patterns and hierarchies of features from large labelled datasets.

Nowadays, deep learning methods are ubiquitous in computer vision. Deep networks
are fed many annotated examples in order to solve image understanding tasks, sometimes
reaching or surpassing human level performance. However, annotating large amounts of
images remains a complex and time-consuming task. Depending on the type of annota-
tions, experts may be required to annotate data for the precise visual task they want to
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solve. As an example, the ImageNet (Russakovsky et al., 2015) dataset requires a many
human-years long effort to fully annotate its more than 14 millions images. Training deep
learning models on such datasets is a costly and compute intensive process but the result-
ing models are not only able to perform well in the dataset of choice but they also serve
as a good initialization point for training models on datasets which have similar visual
features or across different tasks (Huh et al., 2016). Indeed, as part of its classification
task, the model is able to extract features which are effective at describing the visual
content of the image, especially in early layers of the model. As a result, its weights
can be used as is with great results for initially unrelated tasks such as anomaly detec-
tion in images (Defard et al., 2021) or to measure a perceptual distance metric between
images (Zhang et al., 2018).

Unfortunately, such datasets and pre-trained weights are not always available when
the datasets at hand are not composed of RGB natural images or the model architecture
chosen is uncommon. Also, these datasets can contain biases that are not suitable for
real world usage depending on how they have been put together. For example, out of
the 1000 classes contained in the ImageNet dataset, more than 100 are dog breeds which
begs the question about whether or not the model weights can be used for other vision
tasks without adaptation. Therefore, representation learning methods not based on reg-
ular supervised learning have started to emerge as appealing alternatives to the so-called
ImageNet initialization. An increasingly popular set of methods known as Self-Supervised
Learning (SSL) have started gaining momentum in the computer vision research commu-
nity. They are built on the idea that instead of using classification as a task to generate
useful representations, pretext tasks can be created only from non-annotated data using
cleverly crafted objectives. Therefore, a model can be trained to solve such pretext tasks
without relying on human annotations for the dataset as annotations for the pretext tasks
are computed by the training algorithm itself. Hence the naming given to these methods;
self-supervision. Since these methods do not rely on outside supervision to learn mean-
ingful representations which can then be used in a series of downstream tasks with more
success than supervised weights initialization. The rapid growth in popularity of these
methods can be visualized in Figure 1.1. This self-supervision trend has started acceler-
ating in parallel to the rise of deep learning in computer vision with seminal works such
as those of Gidaris et al. (2018), Noroozi and Favaro (2016), Wu et al. (2018), and Zhang
et al. (2016), among others. More recently, a popular branch of Self-Supervised Learning
called joint-embedding methods has been introduced. In these methods, a network is
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Figure 1.1: Number of publications mentioning "Self-Supervised Learning" published each
year since 2000 (source: Google Scholar, the 11/06/2024). Recent years have seen an
increase in the number of self-supervision related publications. Note that the year 2024
is not fully completed and has therefore been extrapolated.

trained to produce similar representations for artificially augmented views of the same
image. These methods also include a technique to prevent a representational collapse in
which the trained model only produces a single constant representation for all input im-
ages which is input-invariant but has maximum alignment between artificial views of the
same sample. Among these joint-embedding methods, we can distinguish the so-called
contrastive methods (Chen et al., 2020a; He et al., 2020) where for each sample, a set of
negative samples is pushed further away in the latent space. Non-contrastive methods,
on the other hand, resort to other techniques to prevent this collapse such as using a
stop gradient operator on on branch (Chen & He, 2021; Grill et al., 2020) or information
maximisation (Bardes et al., 2022; Ermolov et al., 2021; Zbontar et al., 2021). Finally,
with the rising popularity of Vision Transformer (ViT) (Dosovitskiy et al., 2020), masked
auto-encoders (He et al., 2021) offer a promising avenue in Self-Supervised Learning due
to the simplicity of the reconstruction objective.

However, in specific domains such as remote sensing, datasets often have specificities
compared to natural images datasets. Representation learning methods should be able
to leverage these peculiarities in order to yield a more data efficient training process.
Moreover, methods from the computer vision literature sometimes cannot be applied to
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the remote sensing domain without an adaptation. Indeed, images from remote sensing
have different characteristics than natural images. For example, in dense tasks such as se-
mantic segmentation, objects and regions often are small in scale compared to the overall
image. There is also a wide variety of spatial resolutions depending on the chosen sensors.
This can lead to remote sensing images being very large and therefore computationally
expensive to process for off-the-shelf methods without first being pre-processed. The reg-
ularity at which satellites observe the earth is another factor which must be taken into
account when starting an earth observation project. There is often a trade-off between
having high resolution images but at a low regularity and having low resolution images
with a higher capture rate. This trade-off is emphasized by the fact that satellite sensors
do not all capture the same spectral bands. Some missions only capture RGB and near
infrared bands while others capture large ranges resulting in hyperspectral images with
hundreds of channels. As such, remote sensing practitioners are often motivated to gener-
ate multimodal datasets in order to accumulate the benefits of multiple image providers.
Examples of multiple remote sensing datasets can be seen in Figure 1.2.

In a multi-modal dataset, a sample is composed of multiple readings from different sen-
sors. These sensors can vary widely and offer truly heterogeneous datasets which require
specific methods because more general computer vision methods are not applicable. In
multimodal datasets, samples can be co-registered. That is, the capture from the different
sensors have been spatially aligned using the geographical coordinates available with each
sample. As such, a sample of such a multimodal dataset is composed of multiple images
from the same location.

Another trait that image datasets, being from specific computer vision domains or
remote sensing, is having an associated hierarchy. Hierarchical datasets are composed of
ground truth labels which can be organised in a hierarchical fashion by grouping labels in
semantically meaningful super-classes. Datasets taxonomies can be exploited to produce
more data-informed representations and help during the training process. In tasks such as
semantic segmentation, the hierarchical organisation of labels comes naturally. In remote
sensing, labels can oftentimes be grouped in different semantic super-classes which can lead
to the creation of a useful hierarchy. Similarity in such hierarchical spaces for two samples
should ideally yield a higher similarity in visual features in order for the hierarchy to help
improve performance in computer vision tasks. Classification on hierarchical datasets is
still an under explored area of the computer vision literature but has a high potential
to improve vision systems. One can imagine that while classification errors cannot be
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(a) The VEDAI car detection
dataset (Razakarivony & Jurie, 2016).

(b) The Vaihingen semantic segmentation
dataset (Rottensteiner et al., 2012).

(c) The EuroCrops satellite image time se-
ries segmentation dataset (Schneider et al.,
2021) with hierarchical labels.

(d) The Meter-ML multi-modal satellite
scene classification dataset (Zhu et al.,
2022).

Figure 1.2: Examples of remote sensing datasets created for diverse tasks. Images are
taken from the respective papers/dataset.

avoided, it is less serious for a classification model to predict a class which is close in the
hierarchical sense than to predict a class which is very far in the hierarchy and therefore
has no semantic similarity whatsoever. In order to evaluate such systems, hierarchical
metrics should be used instead of the baseline performance metrics such as accuracy. A
hierarchical metric should be able to evaluate if predictions made by a model are close
in the hierarchy to the ground-truth instead of just measuring if right ground-truth class
has been predicted. Research in hierarchical classification is also linked to the task of few
shot learning since the introduction of new classes can be prepared using the hierarchy if
the hierarchical relationship is known between the new classes and the previously present
classes. The hierarchical nature of a dataset is also a good motivation to explore different
embedding spaces for representations.

These peculiarities encourage the computer vision and remote sensing communities to
develop proper methods to leverage or handle datasets specificities. These contributions
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can vary in scope and depth. They sometimes require architectural changes compared to
the more general methods or to design bespoke training objectives which truly embrace
the nature of data in downstream tasks.

One possible area of improvement for specific datasets is to put into question the
default embedding space of latent representations which is the Euclidean space. Indeed,
traditional deep learning methods only operate on Euclidean embeddings in part because
of its well defined distance metric and natural numerical representation. Recently, this
status quo has been challenged with the introduction of alternatives to Euclidean spaces
for deep representations such as hyperspherical or hyperbolic deep learning models. These
alternative embedding spaces are a promising research direction to improve the perfor-
mance of models in specific tasks where they are naturally suited due to their inherent
structure. For example, since hyperbolic spaces are known for their capacity to embed
tree-like structure with minimal distortion (Sarkar, 2011), they become a seducing alter-
native to Euclidean spaces when it comes to classification over hierarchical data.

Finally, in representation learning, several successful works have proposed which con-
sider samples as part of a distribution (Caron et al., 2020; Robinson et al., 2020; Zbontar
et al., 2021). This distribution-based point of view considers that the encoder transforms
samples from the dataset’s distribution in another distribution which should exhibits dis-
criminative properties with respect to the downstream task’s objective. For example, in
contrastive learning, we can consider the set of positives as being drawn from a local neigh-
borhood among the unknown ground-truth distribution from the larger dataset whereas
negatives should faithfully represent the entire universe of possible images (i.e. being
drawn from the ground-truth distribution). Therefore, we can consider the use of tools to
measure discrepancies between distributions when designing representation learning ob-
jectives. Optimal Transport is a popular tool to measure distances between distribution.
Its formulation and its many variants make of Optimal Transport a versatile solution that
machine learning practitioners increasingly reach for.

In this context, this thesis starts with the goal of creating more efficient representa-
tion learning procedures in both computer vision and remote sensing. We consider the
following main objectives:

• Investigate how Self-Supervised Learning can be improved by looking at it from a
distributional perspective.

• Contribute to reducing the need for ground-truth annotations in the process of
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image representation learning.

• Propose representation learning methods tailored to computer vision and remote
sensing datasets specificities such as multi-modality or hierarchical structure in order
to train encoders more efficiently.

We contribute to these aspects in several ways. Our contributions range from propos-
ing improvements to Self-Supervised Learning by leveraging tools such as Optimal Trans-
port to proposing a novel framework for multi-modal representation learning with ap-
plications to remote sensing. In Section 1.2, we outline the content of this manuscript
chapter by chapter.

1.2 Overview of Contributions

In this thesis, we contribute representation learning in the context of computer vision and
remote sensing downstream tasks, ranging from scene classification to object detection
and semantic segmentation. To that end, we consider tools from the machine learning
such as Optimal Transport. This manuscript is organised in the following manner:

• In Chapter 2, we present the technical background required to understand the rest
of the document. Therefore, state-of-the-art Self-Supervised Learning methods are
presented as an introduction to the field of SSL for image representation learning.
This chapter also contains background information on hyperbolic spaces and non-
Euclidean deep learning which will be needed for later chapters. We also introduce
Optimal Transport theory and its computational aspects. Along with general opti-
mal transport, variants of OT are also presented such as entropic OT, Unbalanced
Optimal Transport (UOT) and methods for solving OT in incomparable spaces.

• Chapter 3 introduces our work to leverage Optimal Transport for self-supervised
representation learning. Our contributions range from proposing a variant of con-
trastive learning based on the transport plan between samples in a Self-Supervised
Learning pipeline to a non-contrastive hyperspherical uniformity objective used to
train a self-supervised model. We also introduce a modification to Dense Con-
trastive Learning which works by modeling images as empirical distributions from
their patch representations specifically for the dense downstream tasks such as se-
mantic segmentation and object detection. While some of the presented research is
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currently unpublished, Section 3.2 is based on research that was published in the
following conference article:

"Spherical Sliced-Wasserstein", C. Bonet, P. Berg, N. Courty, F. Septier, L.
Drumetz, and M.-T. Pham, in International Conference on Learning Represen-
tations, 2023.

• Chapter 4 is dedicated to the problem of multi-modal representation learning prob-
lem which is commonly encountered in the field of remote sensing. As such, we pro-
pose a multi-modal contrastive framework for self-supervised pre-training of models
over multi-modal datasets. Moreover, we introduce a multi-modal supervised con-
trastive loss that allows us to improve the task specific finetuning when comparing
to the baseline cross-entropy finetuning. This chapter is based on the following
publications:

"Self-Supervised Learning for Scene Classification in Remote Sensing: Current
State of the Art and Perspectives", P. Berg, M.-T. Pham, and N. Courty, Remote
Sensing, vol. 14, 16, p. 3995, 2022.

"Joint Multi-Modal Self-Supervised Pretraining in Remote Sensing: Application
to Methane Source Classification", P. Berg, M.-T. Pham, and N. Courty, in
IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Sympo-
sium, IEEE, 2023, pp. 6624 - 6627.

"Multimodal Supervised Contrastive Learning in Remote Sensing Downstream
Tasks", P. Berg, B. Uzun, M.-T. Pham, and N. Courty, IEEE Geoscience and
Remote Sensing Letters, 2024.

• Chapter 5 is devoted to the problem of classification over hierarchical datasets. In
these datasets, ground-truth labels can be organised in a hierarchy which provides
an interesting prior knowledge to improve the classification performance over such
datasets. Indeed, depending on how the hierarchy is built, we find that classes
close by in the hierarchy often exhibits similar visual features which can help in the
task of image classification. To that end, we leverage hyperbolic spaces which are
Riemannian manifolds with interesting properties to embed trees and hierarchies.
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Our contribution is two-folds, we first introduce a hyperbolic classification layer
based on ideal prototypes. Secondly, we propose a hierarchically-informed scheme
to initially position these prototypes. The content of this chapter has been the
subject of the following article:

"Horospherical Learning with Smart Prototypes", P. Berg, B. Michele, M.-T.
Pham, L. Chapel, and N. Courty, British Machine Vision Conference (BMVC)
2024.

• In Chapter 6, we summarize our contributions and conclude the manuscript by
discussing potential future research directions following our contributions. This is
the final chapter of this manuscript.
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Chapter 2

BACKGROUND

Contents
2.1 Self-Supervised Representation Learning . . . . . . . . . . . . 19

2.2 Hyperbolic Representation Learning . . . . . . . . . . . . . . . 29

2.3 Optimal Transport . . . . . . . . . . . . . . . . . . . . . . . . . . 35

In computer vision, the starting point to solving a task is often an image which is
represented as a set of pixels in an n-dimensional color space. Working directly on pixels
in order to solve a high-level task such as image classification is difficult. This is also
true when operating with remote sensing images. Therefore, the research community has
worked on developing higher level image representations that would be more discrimi-
native for the task at hand. While these image features were first hand-crafted, it then
became clear that learning-based methods were more efficient at creating optimal repre-
sentations from a training dataset. The task of extracting discriminative representations
from images can be resumed as projecting an image to a lower dimensional space where
solving the task becomes easier. As an example, the optimal representation space for a
classification task is actually the one-hot encoded label space. Since deep learning based
methods require a differentiable objective, models create representations in continuous
spaces and a final classification step is used to create predictions in label space. This
continuous representation space is often naturally chosen as the Euclidean space, but re-
cently, alternative spaces have emerged as interesting options. Among them, hyperbolic
spaces provide interesting properties, specifically for tasks related to hierarchical repre-
sentations. This is in part due to their capacity to embed trees with minimal distortion
compared to other embedding spaces of choice in representation learning.

Data distributions can often be encountered in representation learning. Indeed, one
can consider a series of representations in latent space as being an empirical distribution
drawn from an unknown ground-truth distribution. Modeling such problems under the
distribution prism can be beneficial instead of considering each sample on its own. For
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example, mini-batches in a deep learning pipeline can be seen as an empirical distribution
drawn from the ground-truth distribution of all images considered within the current task.
As such, we reach for tools to measure and compare empirical distributions which have
proven successful in deep learning applications. One such tool is the Optimal Transport
(OT) problem which can be used to measure distances between distributions. In Section
2.3, we introduce to the required background in OT theory which will later be leveraged
in the rest of the document.

2.1 Self-Supervised Representation Learning

The supervised deep learning-based state-of-the-art methods in computer vision often rely
on large amounts of annotated images in order to learn relevant image features. Nonethe-
less, big datasets are very time and labor intensive to annotate. One of the biggest
annotated image recognition datasets is ImageNet (Russakovsky et al., 2015) with more
than 14 million training images and it has taken several human years to annotate. As
a practical approach in many vision-based applied fields, exploiting supervised models
pre-trained on ImageNet is a common way to boost the performance of deep neural net-
works when performing transfer learning or fine-tuning on smaller domain-specific image
data. Regarding the concept of transfer learning, using model weights pre-trained on the
ImageNet dataset can improve performance over randomly initializing network weights
(i.e. training from scratch) (Huh et al., 2016). The pre-trained weights exhibit better
representation capabilities than random parameters, in particular in the first layers of the
network. Still, deeper layers should be trained on the domain-specific data in a process
called fine-tuning so that the network is able to extract features relevant to the new task
and can actually perform predictions. In spite of that, for certain tasks and datasets,
there exists no such pre-trained models. In order to learn discriminative representations
without relying so much on data annotations, Self-Supervised Learning (SSL) methods
were introduced.

In this section, we briefly review the most significant state-of-the-art self-supervised
methods, mostly proposed within the machine learning and computer vision communities.
Without loss of generality, we divide these methods into four categories including gen-
erative, predictive, contrastive and non-contrastive SSL. We note that in the literature,
contrastive and non-contrastive approaches can be regrouped into a single category some-
times referred to as joint-embedding approaches. Our choice is to distinguish these two,
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without any loss of generality. For a more thorough background review of self-supervised
approaches, readers are invited to dedicated review papers such as Jing and Tian (2020),
Liu et al. (2021), and Ohri and Kumar (2021).

x

z

G(·)

D(·)

Classifier

Real/Fake?

z ∼ N(0,1)

x̂

h

Figure 2.1: The GAN ar-
chitecture (Goodfellow et al.,
2014) for use in generative
self-supervised representation
learning. The representation
used is h, the last discriminator
activation before a binary clas-
sification in fake/real labels.

Generative Methods. A common pretext task is
to reconstruct the input image after compression by us-
ing an auto-encoder. To minimize the reconstruction
loss, the model has to learn to compress all significant
information from the image into a latent space with a
lower dimension, using the first network’s component
called encoder. Then, a second network’s component
named decoder tries to reconstruct the image from the
latent space. Denoising auto-encoders (Vincent et al.,
2008) have also been proved to provide robust image
representations by learning to remove artificial noise
from images. The added noise prevents the network
from learning the identity function. Variational Auto-
Encoder (VAE) (Kingma & Welling, 2014) improve over
the auto-encoder framework by encoding the parame-
ters of the latent space distribution. They are trained
to minimize both the reconstruction error and an addi-
tional term minimizing the Kullback-Leibler divergence
between a known latent distribution often picked as the unit centered Gaussian distri-
bution and the one produced by the encoder. This regularization over the latent space
allows to sample from the generated distribution. More recently, the use of vision trans-
formers (Dosovitskiy et al., 2020) has enabled the development of large masked auto-
encoders (He et al., 2021) working at a patch level instead of pixel-wise to reconstruct
entire patches with only 25% of visible patches. This reconstruction task produces robust
image representations by appending a class token to the sequence of patches or simply by
using a global average pooling on all the patch tokens.

Last but not least, another primordial unsupervised generative learning model that
has been significantly explored in the literature is the Generative Adversarial Network
(GAN) (Goodfellow et al., 2014). This architecture and many of its extensions attempt
to generate new data from a random noise with the aim of mimicking real data. GANs are
trained in an adversarial minimax two-player game where one network called the generator

20



Background

G(·) learns to transform the random noise z ∼ N (0, 1) to synthetic data x̂ which tries to
follow the original data distribution. In an adversary approach, a second network called
the discriminator D(·) learns to classify between images from the generator and real
images from the original data set (see Figure 2.1). The output score of the discriminator
is 1 when it is confident that the input image is coming from the real data distribution
and 0 for images created by the generator. This adversarial objective can be written as:

min
G

max
D

1
N

N∑
i=1

log(1 − D(G(zi))) + 1
M

M∑
i=1

log(D(xi)), (2.1)

where z ∼ N (0, 1) is a set of N random noise vectors and x ∼ pdata(x) is a set of M

real images. With such training, the discriminator learns to identify details in the real
images in order to discriminate between real and fake images. To this end, a common way
to produce image level representations from GAN-based models is to use a pre-trained
discriminator as a feature extractor as proposed in Radford et al. (2016).

f(·)

h

p(·)

Predict rotation

Rotate

Figure 2.2: In RotNet (Gidaris
et al., 2018), a random rota-
tion is applied to input images
and the model is then tasked to
classify which rotation was ap-
plied. The model is composed
of an encoder f whose output
representations h are used by a
predictor p to classify the ran-
dom rotation.

Predictive Methods. The second category of SSL
methods involves models which are trained to predict
the effect of an artificial transformation of the input im-
age. Such an approach is motivated by the intuition that
predicting the transformation requires learning relevant
characteristics of semantic objects and regions within
the image. By pre-training a model to predict the rela-
tive position of two image patches, (Doersch et al., 2015)
boosted the performance of a model against a random
initialization and to get closer to the performance of
the initialization with ImageNet pre-trained weights in
iconic computer vision datasets.

Other possible predictive pretext tasks have been
proposed to learn representations. One of them is the
image colorization proposed in (Zhang et al., 2016). In
such an approach, the input image is first converted to
its grayscale version. Then, an auto-encoder is trained
to colorize the grayscale version back to the color one
by minimizing the mean squared error between the re-
construction and the original image. The feature repre-

21



Background

sentations provided by the encoder are considered for later downstream tasks. Another
well-known predictive SSL method is the RotNet (Gidaris et al., 2018) which proposes to
train a model to predict the rotation that was randomly applied to the input image (see
Figure 2.2 for an illustration). Solving this rotation prediction task requires the model to
extract meaningful features that help to understand the semantic content of the image.
Similarly, another SSL model is developed to solve a jigsaw puzzle in Noroozi and Favaro
(2016) to predict relative positions of image partitions that were previously shuffled. Also,
by considering several types of augmentations, the Exemplar CNN (Dosovitskiy et al.,
2014) is trained to predict the augmentations applied to images. In Exemplar CNN, the
authors proposed several augmentation classes including cropping, rotation, color jittering
and contrast modification.

By fulfilling one of these aforementioned pretext tasks, a SSL model is able to learn in-
depth representations of image content. Nevertheless, depending on the pretext task and
on the dataset, the network will not necessarily be able to perform well on all downstream
tasks. As an example, predicting random rotations of an image as in RotNet (Gidaris
et al., 2018) would not perform particularly well on a remote sensing dataset, since the
orientation of objects is not as strictly important as in object-centric datasets.

Contrastive Methods. Another way to yield effective image representations is to
force the features of multiple views of an image to be similar. The final representations
are then invariant to the augmentations used to create the different image views. Yet,
without proper care, the network can converge to a constant representation which is
independent of the input image and which satisfies the invariance constraint (i.e. the
collapsing problem (Jing et al., 2021)).

A common solution to learn diverse representations with the above objective while
preventing the collapsing issue is to use a contrastive loss. Such a loss function attempts
to force the model to discriminate representations between views from the same image
(i.e. positives) and those from different images (i.e. negatives). In other words, it aims to
obtain similar feature representations for positive pairs while pushing away representations
for negative pairs. Within this family of methods, the simplest objective is the triplet
loss (Dong & Shen, 2018) from which a model is trained to provide a smaller distance
between representations of an anchor and its positive than the distance between that
anchor and a random negative (see Figure 2.3 for an illustration). The triplet loss function
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can be formulated as follows.

Ltriplet = max(∥f(x) − f(x+)∥ − ∥f(x) − f(x−)∥ + m, 0), (2.2)

where x+ and x− are the positive and negative samples of the anchor x, respectively;
f(.) is an embedding function and m represents a margin parameter. This idea is then
motivated by the authors in (Wu et al., 2018) who propose to train an image classifier
with as many labels as training samples, which creates well-performing representations in
downstream tasks.

x x+ x−

f(·) f(·) f(·)

x̂ x̂+ x̂−

Attracts

Repels

Figure 2.3: The triplet loss (Dong & Shen, 2018) is used to learn discriminative represen-
tations by learning an encoder which is able to discriminate between negative and positive
samples.

SimCLR (Chen et al., 2020a), one of the most popular SSL approaches, proposes a
form of contrastive representation learning. For each image in the training batch, two
different views are created by sampling random augmentations. These augmented images
are then fed into the representation model followed by a predictor network whose goal is to
project the representation onto a D-dimensional hypersphere. The whole model is trained
to maximize the cosine similarity between a representation z and its positive counterpart
z+ (coming from the same original image) and to minimize the similarity between z and
all the other representations in the batch z−, resulting in the following term:

l(z, z+, z−) = − log exp(⟨z, z+⟩/τ)∑
z′∈z−∪{z+} exp(⟨z, z′⟩/τ)

, (2.3)

where ⟨x, y⟩ is the dot product between x and y; and τ is a temperature parameter
scaling the sharpness of the similarity distribution. The complete loss called normalized
temperature cross entropy (NT-Xent) is computed as follows:
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LNT-Xent = 1
2N

∑
z,z+,z−

l(z, z+, z−). (2.4)

where N is the number of images in the batch.
Since the representations are normalized before the NT-Xent loss is computed, the

loss acts only on the direction of the features within the D-dimensional hypersphere as
illustrated in Figure 2.4 and not on their norm. This loss acts as a proxy to maximize
the mutual information between the two views leading to representations that are both
independent to style and informative only about the content of the image.

z

z+

z−
1

z−
2

Repels
Attracts

Figure 2.4: Illustration of contrastive loss on the 2-dimensional unit sphere with two
negatives (z−

1 and z−
2 ) and one positive (z+) samples from the EuroSAT (Helber et al.,

2019) dataset.

In parallel to SimCLR, the Momentum Contrast (MoCo) (He et al., 2020) method is
proposed to allow for smaller batches with the same effective number of negative samples
when computing the contrastive loss. It uses a sample queue to provide more negative
samples per batch (cf. Figure 2.5) as well as a momentum encoder whose weights are
updated using an Exponentially Moving Average (EMA) of the main encoder’s weights.
For each batch, the oldest samples in the queue are discarded and replaced with the new
positives. Other methods such as Swapping Assignments between Views (SwAV) (Caron
et al., 2020), cluster representations to a common set of prototypes and learn to match
views to consistent clusters between positive pairs. To prevent that all representations
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converge to the same clusters (i.e. collapsing), the entropy-regularized optimal transport
plan (Peyré, Cuturi, et al., 2019) between the representations and the clusters is used. Fi-
nally, the loss minimizes the cross-entropy between the optimal assignments of one branch
with the predicted distribution for the other branch. This method is one example of suc-
cessfully leveraging optimal transport for self-supervised representation learning. Using
an optimal transport plan ensures that the matching is complete between samples from
the batch and the clusters. Said differently, every cluster will have the same quantities
of samples (i.e. the same amount of probabilistic mass) matched with it, leading to a
uniform distribution among clusters. In practice, contrastive methods often require a
large batch size to provide enough negative samples to the loss and to prevent collapsing
representations. In the case of SwAV, this ensures that the mini-batch is faithful to the
actual ground-truth distribution and that the samples-to-clusters transport plan can be
relied upon.

x

Encoder MoCo

x1 ... xn

q k1 ... kQ

Similarity

Loss

Enqueue

EMA

Figure 2.5: In Momentum Contrast (He et al., 2020), a queue of Q samples is built using
a momentum encoder (right) whose weights are updated as an Exponentially Moving
Average (EMA) of the main encoder’s weights (left). Therefore at each step, only the
main encoder’s weights are updated by back-propagation. The similarity between the
queue samples and the encoded batch samples is then used in the contrastive loss (cf.
Equation 2.4).

The above joint-embedding methods tend to create more general representations than
predictive methods. However, depending on the choice of augmentations, they may not
perform well on all downstream tasks. For example, if a model produces the same rep-
resentations for two different crops of the same image, it has then removed any spatial
information about the image and is likely to perform worse in a task which requires this
spatial information like semantic segmentation or object detection. To prevent this effect,
Dense Contrastive Learning (DenseCL) (Wang et al., 2021) was proposed. It applies the
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contrastive loss on patch-level representations instead of at the image-level. This allows
the contrastive model to learn less spatially invariant representations.

Non-Contrastive Methods. As part of joint-embedding learning approaches, other
methods manage to train self-supervised models without using contrastive components in
their loss. We categorize them as non-contrastive methods. Bootstrap Your Own Latent
(BYOL) (Grill et al., 2020) uses a teacher-student network configuration. In a teacher-
student configuration, the student network is trained to match the output (or the features)
of the teacher network. Such an approach is often used in knowledge distillation (Hinton et
al., 2015) where the teacher and student models have different architectures (e.g. the size
of the the student model is much smaller than that of the teacher). In BYOL, the teacher
network’s weights are defined as an EMA of the student network’s weights. The encoders
fA and fB are followed by two projector networks gA and gB whose output is used to
compute the training loss. Only the student encoder fA is then kept to extract image-
level representations. A predictor network is also added on top of the student projector to
prevent collapsing representations (see Figure 2.6) by adding further asymmetry between
the two branches. SimSiam (Chen & He, 2021) uses two identical networks and also
adds a predictor network on one of its branches. Since the two branches share the same
weights, a stop gradient is used asymmetrically in the loss which maximizes the pairwise
alignments between positive pairs. DINO (self-DIstillation with NO labels) (Caron et
al., 2021) uses a student-teacher transformer architecture referred to as self-distillation
where the teacher is defined as an EMA of the student network’s weights. The student
is then trained to extract the same predictions as the centered and sharpened output of
the teacher network for a given positive pair.

x

xA

xB

f
A(·)

f
B(·)

yA

yB

g
A(·)

g
B(·)

zA

zB

p
A(·) qA

∥∥∥ qA

∥qA∥ − zB

∥zB∥

∥∥∥2

2

EMA

//

Figure 2.6: The non-contrastive BYOL (Grill et al., 2020) architecture which uses a
student A and a teacher B pathways to encode the images. The teacher’s weights are
updated using an EMA of the student’s weights. The online branch is also equipped with
an additional network pA called the predictor.
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Without requiring separate weights for each branch of the teacher-student pipeline
as in BYOL or SimSiam, another non-contrastive learning framework named Barlow
Twins (Zbontar et al., 2021) is proposed based on the information bottleneck theory (Saxe
et al., 2019). Such a method maximizes the mutual information between two views by
increasing the cross-correlation of their corresponding features provided by two identical
networks while removing redundant information in these representations. The principle is
based on the information bottleneck. The loss function of Barlow Twins is the following:

LBarlow-Twins(C; θ) =
N∑

i=1
(1 − C2

ii) + λ
N∑

i=1

∑
j ̸=i

C2
ij, (2.5)

where C represents the cross-correlation matrix which is computed as follows:

Cij =
∑

b zA
biz

B
bj√∑

b(zA
bi)2

√∑
b(zB

bj)2
. (2.6)

where zA and zB are the outputs of two identical networks fed with the two views of an
image.

Recently, a method using Variance, Invariance, Covariance regularization (VICReg) (Bardes
et al., 2022) has been proposed to improve this framework. Unlike Barlow Twins, the loss
terms are independent for each branchexcept for the invariance which explicitly maximizes
alignment between positive pairs. This enables non-contrastive multi-modal pre-training
between text and image pairs by relying on a different regularization for each pathway.

Another promising non-contrastive method is called Maximum Manifold Capacity
Representation (MMCR) (Yerxa et al., 2023). Based on the manifold capacity theory,
which evaluates the probability of finding a separating hyperplane for P manifolds em-
bedded in D dimensions. It groups the spherical representations zk

i of K views of the
same images in centroids, one for each sample i. As such, these centroids have a norm
which is smaller than one. A matrix of these centroids is then built to construct a basis
in the embedding space.

Ci = 1
K

K∑
k=1

zk
i (2.7)

The MMCR objective tries to maximize the nuclear norm of this matrix. The nuclear
norm, also known as the trace norm, is the sum of the singular values of the input
matrix. This has the effect of distributing representations around the hypersphere as well
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as grouping the representations of views of the same sample together since centroids are
pushed to the surface of the unit-hypersphere. Indeed, as the centroids’ norms get closer
to 1, all views from the samples converge to the same representation. The MMCR is
defined as:

LMMCR(C; θ) = −∥C∥⋆ = −
min(d,N)∑

i=1
σi(C), (2.8)

where σi(C) is the ith singular value of C. Since the nuclear norm is a convex envelope
for the rank of C, therefore maximizing the nuclear norm effectively tries to make the
centroids representations orthogonal to each other.

About Benchmarking Self-Supervised Methods. As seen in this section, self-
supervised models generate representations from the data samples. These representations
are made to be as discriminative as possible for a given downstream task. However,
without using labels it is difficult to evaluate the quality of said representations. One can
measure the effectiveness of the representation by performing an image retrieval task on
the validation set only where the model can perform inference from the representations
only and then select the top-k most similar images in the set. Other clustering metrics
could be used such as the Rand index (Rand, 1971) or the Silhouette score (Rousseeuw,
1987). In practice, computer vision has converged on classification benchmarks on top of
the representations. That is, once the model is pre-trained in a self-supervised fashion,
a classifier is trained to classify the representations in the different classes relevant to
the downstream task. This classification can be declined in multiple ways but the most
popular methods are using a k-nearest neighbor classifier, training a linear classifier or
fully fine-tuning the model to perform classification with an added linear layer. Adding
a linear classifier on top of the frozen self-supervised encoder is often referred to as the
linear evaluation protocol (Caron et al., 2021; Chen et al., 2020a) and is commonly used
to measure the linear separability of the learned representations. However, self-supervised
models which perform less effectively in the linear protocol are not necessarily worse image
encoders in other benchmarks as is the case for masked auto-encoders (He et al., 2021)
for example.

This two-step process of first pre-training and then learning a classifier makes it harder
to evaluate the performance of self-supervised models during their training. As such,
certain models are trained in a self-supervised fashion while a linear classifier is learned
on top in a process called online linear probing (Garrido et al., 2023). This process
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removes the need for a costly linear training and evaluation after the pre-training while
offering a good proxy for the classification performance that would be reached under the
linear evaluation protocol.

Another technique to diminish the computational impact of self-supervised models
evaluation but also to evaluate their data efficiency is to perform the linear evaluation or
fine-tuning under a limited data regime by using only a subset of the training data labels
available. This setting often highlights the performance gain provided by Self-Supervised
Learning compared to a single supervised training on the limited dataset.

Current Limits. As powerful pre-trained self-supervised models are released pub-
licly (Oquab et al., 2023), their weights are used for a number of downstream tasks and
become the de-facto initialization for many model architectures. However, pre-trained
weights are not always available for uncommon modalities and architectures. This re-
quires practitioners to pre-train from scratch on their respective tasks. Moreover, current
methods from the computer vision literature often do not leverage the additional infor-
mation which can be present in some datasets. For example, multimodal datasets contain
multiple modalities for a single sample and since the methods presented in this section
only operate on a single modality, they are not able to exploit the multiple modalities.
As such new methods or extensions need to be developed in order to take into account
these multiple modalities. Another example is that most current joint-embedding meth-
ods are projecting to the hypersphere before computing their variant of a self-supervised
objective. Compared to Euclidean representations, this has the advantage of preventing
the variance of representations from going to infinity. However, certain downstream tasks
could benefit from using different embedding spaces. With the right formulation, recent
works have successfully used hyperbolic spaces (Franco et al., 2023; Ge et al., 2023) as
an embedding space for computing a self-supervised objective. In the next section, we
present the background in hyperbolic representation learning and discuss why it can be a
more appropriate choice of embedding spaces for tasks such as hierarchical classification.

2.2 Hyperbolic Representation Learning

While representation learning is often synonymous with Euclidean representations, other
embedding spaces have recently emerged as appealing alternatives. Indeed, embedding
samples into a different metric space can improve the representation capabilities (Bron-
stein et al., 2017). We have already seen in Subsection 2.1 that hyperspheres are often
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adopted as the de-facto embedding space in Self-Supervised Learning in part due to the
so-called cosine similarity which serves as a measure of alignment between data sam-
ples. Other notable embedding spaces include the cone of Positive Semi-Definite matrices
(e.g. (Pennec, 2020)) used for covariance matrices or symmetric spaces such as the Siegel
space (López et al., 2021) that naturally embed graphs. Recently, hyperbolic spaces have
been gaining momentum in the research community. Hyperbolic spaces are Riemannian
manifolds with a negative curvature. Interestingly, the hyperbolic distance metric is suited
to embed trees with minimal distortion (Sarkar, 2011) which makes them a natural choice
as an embedding space to perform representation learning on a variety of tasks. Hyper-
bolic spaces have successfully been used in a number of text (Dhingra et al., 2018; Ganea
et al., 2018a; Nickel & Kiela, 2017; Tifrea et al., 2018), data classification (Cho et al.,
2019; Fan et al., 2024), and vision (Atigh et al., 2022; Dhall et al., 2020; Ermolov et al.,
2022; Ge et al., 2023; Ghadimi Atigh et al., 2021; Mettes et al., 2024) related tasks as an
alternative to Euclidean or other embedding spaces.

A number of hyperbolic neural network layers have been proposed (Peng et al., 2021)
to replace their Euclidean counterparts such as linear layers (Ganea et al., 2018b), con-
volutional layers (Shimizu et al., 2020) or even entire hyperbolic networks (van Spengler
et al., 2023) where all activations are in hyperbolic space. In particular, hyperbolic repre-
sentations show promising results in hierarchical tasks such as image classification (Chang
et al., 2021), action recognition (Long et al., 2020; Surís et al., 2021) or image segmen-
tation (Atigh et al., 2022) where label hierarchies are well-defined. Recently, hyperbolic
spaces have been used in self-supervised representation learning by defining a hierarchy
between objects and scenes (Ge et al., 2023) or for self-paced learning (Franco et al.,
2023) leveraging the innate structure of the space to interpret the radius as a measure of
uncertainty.

For a more detailed background about Hyperbolic spaces, we refer the reader to the
books of Brannan et al. (2011) and Loustau (2020). Multiple models exist to represent
hyperbolic objects. One of the most popular hyperbolic model in machine learning is that
of the Poincaré ball which is defined as the points included in an hypersphere of radius
1√
c
:

Hc
d = {x ∈ Rd, ∥x∥2

2 < 1/c}, (2.9)

where c > 0 refers to the curvature. Note that in the case where c = 0, we recover H0
d = Rd.

In the Poincaré ball model, the hyperbolic distance between two points x, y ∈ Hd
c is defined
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as:

dH(x, y) = 1√
c
cosh−1

(
1 + 2c

∥x − y∥2
2

(1 − c∥x∥2
2)(1 − c∥y∥2

2)

)
. (2.10)

dH(x, y)

x

y

Figure 2.7: The Poincaré disk H1
2 and the geodesic between points x and y. dH(x, y)

describes an arc drawn for a Euclidean circle orthogonal to the disk. On the left, a set of
geodesics passing through the same point at the infinity.

Figure 2.8: Example of the ex-
ponential map expp(·) on a hy-
persphere Sd, in this case the
tangent space of a point p on
the sphere is the tangent plane
at point p, TpSd = {x; ⟨p, x −
p⟩ = 0; x ∈ Rd+1}.

The hyperbolic geodesics analogous to Euclidean
straight lines correspond to arcs between points drawn
from Euclidean circles orthogonal to the boundary of
the Poincaré ball as well as all diameters of the ball. An
example of such geodesic line can be seen in Figure 2.7.

In order to project between Euclidean and hyper-
bolic space, one has to resort to exponential and log
maps which project from, respectively to, the tangent
space TpHc

d at a defined point p ∈ Hc
d. An example of

the exponential map on the hypersphere can be seen in
Figure 2.8.

The tangent space at any point of the Poincaré ball
is the Euclidean space of the same dimension Rd, which
means that points in Euclidean space can be projected
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on the Poincaré ball using the exponential map expc
p :

Rd → Hc
d which is defined as such:

expc
p(v) = p ⊕c

(
tanh

(
√

c
λc

p∥v∥2

2

)
v√

c∥v∥2

)
, (2.11)

where ⊕c corresponds to the Möbius addition, a transformation analogous to vector ad-
dition in Euclidean space but in hyperbolic space and λc

p = 1/(2 − c∥p∥) is the conformal
factor at point p.

Reciprocally, to project from the manifold to the tangent space at a point, the log-
arithm map logc

p : Hc
d → TpHc

d can be used. In the Poincaré ball model, it is defined
as:

logc
p(x) = 2√

cλc
x

tanh−1(
√

c∥−x ⊕c y∥) −x ⊕c y

∥−x ⊕c y∥
(2.12)

The exponential (resp. logarithm) map to project from (resp. to) the tangent space
of the origin can be written in a more simplified manner:

expc
0(v) = tanh(

√
c∥v∥) v√

c∥v∥
, (2.13)

logc
0(x) = tanh−1(

√
c∥y∥) y√

c∥y∥
. (2.14)

The origin is often used as the point of reference when projecting from Euclidean
representations to hyperbolic ones.

The Möbius addition between x, y ∈ Hc
d is defined as:

x ⊕c y = (1 + 2c⟨x, y⟩ + c∥y∥2)x + (1 − c∥x∥2)y
1 + 2c⟨x, y⟩ + c2∥x∥2∥y∥2 . (2.15)

When the Poincaré ball is used as an embedding space in computer vision, it is gen-
erally only applied in the last layers of a model whereas the previous layers operate on
regular Euclidean representations, where an exponential map is used to project samples
in Euclidean space to hyperbolic space. But it is also possible to perform all operations
in the hyperbolic space by using hyperbolic operators for each operation in the backbone
model (van Spengler et al., 2023).

Ideal Boundary. For each geodesic ray γ : R → Hc
d, defined from two distinct

points x and y as in Figure 2.7 such that γ(tx) = x and γ(ty) = y. This geodesic can
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be described from the points γ(−∞) and γ(+∞) located at the infinity of the hyperbolic
space. The set of all such points at infinity is referred to as the Gromov boundary or ideal
boundary. In the Poincaré ball model, the ideal boundary corresponds to the surface of
the corresponding ball {p; ∥p∥2 = 1√

c
, p ∈ Rd}. In Figure 2.7, ideal points for the geodesic

between x and y are located at the intersection between the geodesic and the unit-circle.
The geodesic is perpendicular to the Poincaré ball at two ideal points associated with
each geodesic. While ideal points are not strictly in the Hyperbolic space, they can be
used as a direction with respect to which a measure of alignment can be computed with
points in hyperbolic space.

Busemann function. Busemann functions (Busemann, 1955) are a measure of align-
ment between ideal points located at infinity and points embedded in hyperbolic space
where regular distance metrics such as dH would fall short (i.e. be infinite). It can be
seen analogously to the Euclidean dot product which returns a measure of alignment in
Euclidean space. While Busemann functions can be derived for all Riemannian manifolds
of negative curvature, we discuss here Busemann functions in hyperbolic spaces. Let γ be
a geodesic ray in the manifold M, such that dM(γ(0), γ(t)) = t, ∀t ≥ 0. The Busemann
function Bp : M → R with respect to an ideal point p located at the ideal boundary of
M is defined as:

Bp(x) = lim
t→+∞

(t − dM(x, γ(t))), x ∈ M. (2.16)

The value of the Busemann function can be seen as a form of measure of alignment
with respect to the ideal point p. In the Poincaré ball model, the Busemann function has
a closed-form solution which is defined as:

Bp(x) = 1√
c

log
(

∥p −
√

cx∥2
2

1 − c∥x∥2
2

)
, (2.17)

for x ∈ Hc
d and p ∈ Sd−1. Intuitively, the Busemann function measures the coordinates of

x along the geodesic arc which contains x and has p as an endpoint.
Hyperbolic Gyroplans. Ganea et al. (2018b) introduced a hyperbolic counterpart

to Euclidean hyperplanes in order to perform classification between samples embedded
in hyperbolic space. These gyroplanes can be used to classify samples in the Poincaré
ball. Each gyroplane is parameterized by a point p ∈ Hc

d and a normal vector w ∈ TpHc
d

embedded in the tangent space at point p. The gyroplane decision boundary is defined
as:
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Hp,w = {z ∈ Hc
d, ⟨−p ⊕c z, w⟩ = 0} . (2.18)

From a set of gyroplans, one can define an hyperbolic classifier by computing logits
from the hyperbolic distance between the gyroplans and a given sample z ∈ Hc

d:

ζy(z) =
λc

py
∥wy∥2

2√
c

sinh−1
(

2
√

c⟨−py ⊕c z, wy⟩
(1 − c∥⟨−py ⊕c z, wy⟩∥2

2)∥wy∥2
2

)
, (2.19)

and then a class membership probability can be computed by computing the softmax
probability from the different logits ζy. An example of the binary decision boundary for
a single gyroplan can be seen in Figure 2.9.

Figure 2.9: An hyperbolic gyroplan which is parameterized by a point p in the Poincaré
disk and a normal vector w⃗ ∈ TpHc

d.

Optimization in Riemannian Manifolds. Models like the hyperbolic gyroplan
have parameters which are embedded in the hyperbolic space. When optimizing these
parameters using Stochastic Gradient Descent, one has to be careful since there are no
guarantees that the parameters stay on their respective manifold after applying the gra-
dient update. Therefore, optimization on Riemannian manifolds is modified to use Rie-
mannian gradient descent (Bonnabel, 2013) where the parameters are projected back onto
their manifold after the weight update. The update of weight θ at each iteration is defined
as:

θt+1 = expθt
(−ηt∇L(Xt; θt)), (2.20)

where ηt is the step size, also known as the learning rate and ∇L(Xt; θt) can be viewed as
the Riemannian gradient of the loss function at point Xt with respect to θt. Oftentimes,
Xt will be a mini-batch sampled from the larger training dataset. In practice, since the
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exponential map can be expensive to compute, one can replace it with a retraction function
Rθt , that is, an estimation of the exponential map with the following property on a point
v embedded within the tangent space TθM: dM(Rθ(tv), expθ(tv)) = O(t2). For example,
a retraction of choice for the hyper-spherical manifold Sd−1 is the Euclidean addition
followed by a projection on the sphere. Other gradient-based optimization methods have
been adapted to the non-Euclidean setting such as Riemannian Adam by Bécigneul and
Ganea (2018).

2.3 Optimal Transport

In machine learning, statistical distributions are ubiquitous. Instead of considering each
sample or point as a single element, modeling deep learning problems from an empirical
distribution point of view can be beneficial. Datasets or mini-batches can be modeled as
empirical measures over the real unobservable distributions.

Optimal transport is a tool that can be used to compare distributions and as such
has gained popularity in a number of machine learning problems such as domain adap-
tation (Courty et al., 2016), generative modeling (Arjovsky et al., 2017) and image com-
parisons (Rubner et al., 1998). In this section, we provide the reader with background
information about Optimal Transport (OT) which will be used later in the document.
For more detailed information, we refer the reader to the book of Villani et al. (2009).
For the computational aspects of OT, more details can be found in the book of Peyré,
Cuturi, et al. (2019).

2.3.1 General Optimal Transport

The Optimal Transport problem consists in finding the optimal way to transport mass
from a source distribution to a target distribution. It was first introduced in Monge (1781).
In Monge’s formulation, a particle x from the source distribution displaces its mass µ(x)
following the so-called Monge map T (x) towards a particle of the target distribution ν

where µ and ν are supported on Ωµ and Ων respectively. The goal is to find an optimal
transport map such that it minimizes the total amount of cost to displace mass:

inf
T#µ=ν

∫
Ωµ

c(x, T (x))µ(x)dx, (2.21)
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where c : Ωµ × Ων → [0, +∞] is a measure of distance between particle x and y from the
source and target distributions respectively and T#µ denotes the push-forward of µ by T .
When µ and ν are empirical distributions both containing the same amount of particles,
then the Monge problem is akin to solving the linear assignment problem.

γ
Figure 2.10: Simple discrete Optimal Transport between source and target empirical
distributions each composed of three samples.

OT was then generalized by Kantorovich (1942) which relaxed the initial formulation
by allowing the transport map to transport a source particle mass to multiple target
particles.

inf
γ∈U(µ,ν)

∫
Ωµ×Ων

c(x, y)γ(x, y)dxdy, (2.22)

where U(µ, ν) is the set of joint probability measures on Ωµ × Ων with marginals µ on Ωµ

and ν on Ων respectively.
While the formulations in Equations 2.21 and 2.22 operate over continuous support,

in machine learning, the problem is often treated as a transport between discrete dis-
tributions where each atom in the source and target distributions can correspond to a
data sample. This is because the gathered data can be thought of as being sampled from
the ground truth distributions which are not observable. An example of such a problem
between two point clouds supported on the plane can be seen in Figure 2.10. For a and
b two vectors in the simplex of size n and n′, such that ∑i an

i=1 = 1 and ∑n′

i=1 bi = 1, they
describe the probabilistic mass given to each sample of the source and target distributions
respectively. Given a cost matrix C of size Na × Nb where Cij is a measure of distance
between the ith sample of the source and the jth sample of the target distribution, in the
discrete setting, the OT problem can be written as a linear program:
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LC(a, b) = min
P ∈U(a,b)

⟨C, P ⟩F , (2.23)

where ⟨·, ·⟩F is the Frobenius dot-product. As a result, the optimal transport plan P is
also a matrix of size n × n′ and elements Pij indicates how much probabilistic mass must
be transported from source sample i to the target sample j. An optimal solution to this
problem can be found using the network simplex algorithm (Ahuja et al., 1988).

c-cyclical monotonicity. In the discrete setting, one can see OT as solving the
minimum-cost flow on a bi-partite graph whose two vertex sets represent the source and
target samples respectively. Let’s consider an optimal transport problem between a source
distribution composed of xi ∈ X and a target distribution composed of yi ∈ Y with cost
c : X × Y → (−∞, +∞]. Now consider a particular subset of N edges on the bi-
partite graph (x1, y1), . . . , (xN , yN) such that they form a cycle. Note that an edge (xi, yi)
corresponds to a transfer of mass. If the edge belongs to non-optimal transport plan then
there may exist a pair xi, yj such that the mass of xi can be transported to yj instead.
Following this change, the mass of xj cannot be transported to yj anymore and therefore
has to be moved to another y. This delta of mass is pushed all the way along the edges
such that yi actually receives its now missing mass. If the points are ordered along the
changes made, that is x1 is now transporting to y2 and y1 now receives mass from xN ,
then the new transport plan has a lower cost if:

c(x1, y2) + c(x2, y3) + · · · + c(xN , y1) < c(x1, y1) + · · · + c(xN , yN). (2.24)

A set of points (xi, yi), i ∈ [1, N ] is said to be c-cyclically monotone if there exists
no such possible improvement. Taking an optimal transport plan, it is straightforward
to see that it is c-cyclically monotone. Otherwise, there would exist a way to lower its
associated cost and it would as such not be an optimal solution to the problem. As such,
finding suboptimal cycles and lowering their cost by moving the mass along the cycle is
a key part of the network simplex algorithm which is one way to solve an exact optimal
transport problem.

Kantorovich Duality. Since empirical Optimal Transport can be written as a linear
program. It exists a dual linear program whose solution will also be an optimal solution
to the primal problem. The dual formulation of Optimal Transport can be written as:

LC(a, b) = max
f,g

⟨f, a⟩ + ⟨g, b⟩, s.t. ∀i, j fi + gj ≤ Ci,j. (2.25)
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Unlike the primal solution which represents a joint probability distribution between
atoms from the source and target distributions, the dual solution is in the form of two
vectors f and g that represents the contribution of this point (i.e. its cost) to the final
cost when weighted by its probabilistic mass.

The relationship of (f⋆, g⋆), optimal solutions to the dual problem shown in Equa-
tion 2.25 with the optimal solution of the primal problem P ⋆ is that for each pair (i, j) such
that P ⋆

i,j > 0, then the dual constraints are referred to as being tight, that is f⋆ +g⋆ = Ci,j.
Reciprocally, if a pair (i, j) does not satisfy the tightness constraint by having fi+gj < Ci,j,
then P ⋆ = 0 and therefore no mass is transported from source sample i to target sample
j. As such, one can compute a pair of feasible duals from an optimal primal solution P ⋆

by exploiting this property. This is done by setting an initial value for one of the dual and
then by walking the underlying bi-partite graph enforcing tightness inside pairs where
mass is transported in the primal solution.

Entropic Regularization. Since the computational complexity of OT remains a
drawback for its adoption in Machine Learning (ML) tasks where datasets can be large,
many regularizations of the OT problem have been proposed to make it more amenable
for ML problems. One of the most popular is the entropic regularization (Cuturi, 2013)
which modifies the original formulation to also include a term quantifying the entropy of
the transport plan. The entropic regularized optimal transport is defined as:

Lϵ
C(a, b) = min

P ∈U(a,b)
⟨P, C⟩F − ϵH(P ), (2.26)

where ϵ is a parameter to control the amount of importance given to the entropic regular-
ization and H(P ) is the entropy of the coupling matrix defined as H(P ) = −∑

i,j Pi,j(log(Pi,j)−
1). In this case, one can see that when ϵ = 0, the entropic regularized OT falls back to the
regular OT problem. Interestingly, this regularization of the OT problem can be solved
in O(n2) complexity using the so-called Sinkhorn-Knopp algorithm (Cuturi, 2013) which
can be implemented on GPUs, making it a method of choice when used in deep learning.
Another advantage of entropic OT is that, unlike with regular OT, the resulting transport
cost is differentiable. However, note that because of the added entropic regularization, the
entropic transport plan is smoother than its exact transport counterpart. In fact, with
ϵ → +∞ the optimal entropic transport plan is the most uniform while still respecting
the marginals Pi,j = 1

ai×bj
. An example of entropic optimal transport plans with varying

ϵ can be seen in Figure 2.11.
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(a) ϵ = 0.01. (b) ϵ = 10.

Figure 2.11: Entropic Optimal Transport plan, as ϵ increases so does the smoothness of
the optimal entropic transport plan.

2.3.2 Sliced Wasserstein Distance

Solving the OT problem has a high complexity which motivates the proposal of new
algorithms to scale OT to larger distributions. One such algorithm is the Sinkhorn-
Knopp algorithm presented in Section 2.3.1. Another popular variant used to speed up
Optimal Transport is called sliced optimal-transport. First, observe that while optimal
transport has a generally high computational complexity of O(n3) for distributions of n

samples, solving OT between distributions supported on the real line R is easier. Indeed,
on the real line, the solution comes naturally by walking along the line and transporting
mass from source to target distributions. In the discrete setting, one needs to compute
the empirical quantile function F −1 : [0, 1] → R which is the inverse of the cumulative
distribution function F : R → [0, 1] for both the source and target distribution. In this
case, the Wasserstein distance between µ and ν two distributions supported on the real
line is:

Wp(µ, ν) =
∫ 1

0
|F −1

µ (x) − F −1
ν (x)|pdx. (2.27)

An example of an optimal transport problem between empirical distributions on the
real line can be seen in Figure 2.12.

The Sliced Wasserstein (SW) distance, which was first introduced by Rabin et al.
(2012), takes advantage of this lower complexity on the real line by projecting the dimen-
sions in higher dimensions to lines and taking the mean cost of these 1D optimal transport
costs along all these projections. Therefore, the Sliced Wasserstein (SW) distance between
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(a) Samples from µ and ν on the real line.

(b) The corresponding empirical quantile functions for µ and ν.

Figure 2.12: A discrete optimal transport problem on the real line R and its optimal trans-
port plan. The optimal transport cost corresponds to the gray area in subfigure 2.12b.
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θ

Figure 2.13: Projection on the straight line described by θ of the source and target
distributions. The Optimal Transport is then solved along this line using the method
based on the empirical quantile functions.

two distributions µ and ν supported on Rd is defined as:

SWp(µ, ν) =
∫
Sd

Wp(P θ
#µ, P θ

#ν)dθ, (2.28)

where P θ
#µ represents the projection of µ on the straight line along θ. In practice, the

integral is replaced with a Monte-Carlo estimation along straight lines whose directions
are sampled uniformly around the unit hypersphere. An example projection of empirical
distributions from the plane to a straight line can be seen in Figure 2.13. So given
θi, i ∈ {1, . . . , L} the realization of L samples from Θ ∼ Unif(Sd) the uniform distribution
on the unit hypersphere, an estimation of the Sliced Wasserstein distance can be computed
as such:

SWp(µ, ν) = 1
L

L∑
i=1

Wp(P θi
# µ, P θi

# ν). (2.29)

The Sliced Wasserstein distance has recently been extended to a number of Riemannian
manifolds such as the hypersphere, hyperbolic spaces and the space of symmetric positive
definite matrices in (Bonet et al., 2023c, 2023b, 2024) where the notion of straight lines
is different than in Euclidean spaces.

41



Background

2.3.3 Unbalanced Optimal Transport

Subsection 2.3.1 describes the general Optimal Transport problem, but several variants of
the OT problem have been proposed over the years. One of these variants is the Unbal-
anced Optimal Transport (UOT) problem. General OT is referred to as being complete
since all mass from the source distribution is transported to the target distribution (i.e.
Both probabilistic masses sum up to 1). Indeed, one of the constraints of the Optimal
Transport problem is respect of the marginals distributions in the set of all candidate so-
lutions Γ(µ, ν). UOT instead considers that mass which is too costly to transport should
not be transported by allowing the marginal distributions of resulting transport plan to be
modified with respect to the source and target distributions. The amount of modification
of the marginal is quantified using a divergence between the source (resp. target) distri-
butions and the resulting marginal distributions. The UOT problem can be formulated
as such:

inf
γ

∫
Ωµ×Ων

c(x, y)dγ(x, y)dxdy + λ(KL(γ#µ | µ) + KL(γ#ν | ν)), (2.30)

where KL refers to the Kullback-Leibler divergence and λ is a parameter to regularize
the amount of distortion with respect to the source and target distributions. With this
formulation, the regular Optimal Transport problem is recovered with λ = +∞. An
example of OT problem where it is too costly to transport mass can be see in Figure 2.14.
The UOT can be solved with an entropic regularization (see Equation 2.26) using the
algorithm proposed by Chizat et al. (2018).

In the context of Optimal Transport for machine learning, UOT has proven to be a
useful tool. Since the empirical distributions observed in the world can have outliers where
the OT plan would transport samples with a high cost. For example, this is the case when
solving mini-batch OT since the entire support of distributions may be available at each
batch (Fatras et al., 2021).

2.3.4 Optimal Transport between Incomparable Spaces

The OT problem and its unbalanced variant presented in Subsections 2.3.1 and 2.3.3 all
require the existence of a cost function c : Ωµ × Ων → [0, +∞] which computes a distance
between pairs of samples from each distribution µ and ν. The existence of this function
prevents applying general OT between distributions supported on incomparable spaces.
The Gromov-Wasserstein (GW) distance (Mémoli, 2011) is proposed as alternative dis-
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Figure 2.14: Unbalanced Optimal Transport between source and target distributions. The
transport here is unbalanced since mass is created at each of the two modalities of the
target instead of transporting from the source which is further away.

tance to the Wasserstein specifically for the case where source and target distributions are
embedded in incomparable spaces. The core insight of the Gromov-Wasserstein distance
is that instead of comparing the distance between elements in each distribution support,
the GW distance compares the inner distance matrices of each distribution.

The GW transport plan is computed by comparing the inner metrics from each distri-
bution. Therefore, the transport plan is based on the inner structure from each distribu-
tion instead of on the pairwise distances between samples from each distribution. Given
two empirical distributions µ = ∑n

i=1 δxi
ai ∈ P(X ) and ν = ∑n′

j=1 δyj
bj ∈ P(Y ) over

two metric spaces (X , dX ) and (Y , dY) respectively with a and b, two simplex histograms
of n and n′ bins respectively such that ∑n

i=1 ai = 1 and ∑n′

j=1 bj = 1. δx is the Dirac
measure in x. Mµ and Mν are the matrices of pairwise distance between atoms of µ and
ν respectively computed with respective distance functions cµ : X × X → [0, +∞] and
cν : Y × Y → [0, +∞]. The GW distance solves the following problem:

GW 2(Mµ, Mν , a, b) = min
γ∈U(a,b)

∑
i,j,k,l

|(Mµ)i,k − (Mν)j,l|2γi,jγk,l. (2.31)

Where the resulting optimal γ is a joint distribution between the source and target
distribution. Note that in the case of the GW distance, there is indeed no need to compute
a distance between samples from the source and target distribution. Those can therefore
be embedded in incomparable spaces. An illustration of the GW distance can be seen in
Figure 2.15 where X ⊂ R2 and Y ⊂ S1. As such, the respective distance metrics for µ
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and ν are cµ(x, x′) = ∥x − x′∥2 and cν(y, y′) = arccos(⟨y, y′⟩).

x1 x2

x3

y1y2

y3

|d(x1, x3) − dS1(y1, y3)|

Figure 2.15: Gromov-Wasserstein distance between a source distribution on the plane
equipped with the Euclidean distance and a target distribution on the circle equipped
with the distance on the circle dS1(·, ·). In this situation, one of the optimal solution is to
transport from and to nodes of the same colors (x1 to y1, x2 to y2 and x3 to y3).

Following the successful applications of the GW distance to several machine learning
problems, another variant of Optimal Transport on incomparable spaces was proposed.
Instead of leveraging the inner metrics of the source and target distributions, Redko et al.
(2020) propose to compute a coupling between features in order to project from the source
embedding space to the target embedding space along with still optimizing the optimal
transport plan between samples after said-projection. They call this joint-optimization
problem Co-Optimal Transport (COOT).

This linear transformation can be seen as a transport plan between source and target
variables. Given two empirical distributions X and X ′ supported on X (resp. X ′). We
call πs the transport plan between source and target samples and πv the transport plan
between variables of the source and target embedding spaces. The COOT problem is
defined as follows:

min
πs∈U(µ,ν)
πv∈U(a,b)

∑
i,j,k,l

L(Xi,k, X ′
j,l)πs

i,jπ
v
k,l (2.32)

where L is a divergence between 1D variables such that L : R × R → R+. With the
optimal solutions, one can use the variable-wise transport plan to project samples from X
to X ′ using the πv linear transformation. A simple example of the Co-Optimal Transport
problem between two point clouds can be seen in Figure 2.16. In this example, the source
distribution X is projected onto the real line using the feature-wise transport plan πv.
The COOT problem has also been studied in the unbalanced setting in Tran et al. (2023).
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Figure 2.16: An example of a Co-Optimal Transport problem between X supported on R2

and Y supported on the real line R with uniform marginals both feature and sample-wise.
Arrows from X to projX denote the variable transport plan πv and arrows from projX
to Y denote the sample-to-sample transport plan πs on the line.

45



Chapter 3

OPTIMAL TRANSPORT FOR
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In this chapter, we investigate how Optimal Transport can be leveraged in self-
supervised representation learning. We will see that empirical distributions can be found
in multiple places of the SSL framework. OT for SSL has successfully been used in the
SwAV (Caron et al., 2020) and Dino-v2 (Oquab et al., 2023) methods to compute match-
ings between samples from a batch and a set of prototypes. We explore other ways to to
model data as empirical distributions. One example is considering image representations
in latent space as an empirical distribution drawn from the ground-truth distribution
where OT can be useful to guide the training of the image encoder. In this example,
its output distribution is guided by the OT cost. Another option is to model a single
image as a distribution of patch representations supported in the embedding space. In
this context, patches can be considered samples from the underlying image distribution.
Both the OT cost and its associated transport plan can therefore become useful artifacts
to compute meaningful pre-training objectives. Structural or computational constraints
motivate us to reach for several variants of the OT problem such as entropic OT, sliced
OT or unbalanced OT depending on the studied problem.

More specifically, in Section 3.1, we first consider the joint-embedding Self-Supervised
Learning setting. In this framework, an image encoder is trained to produce discriminative
image-level representations by using random augmentations to produce multiple views of
the same image. We propose to augment this self-supervised pre-training by modeling
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the generated representations as an empirical distribution embedded in latent space. We
then investigate guiding the encoder’s pre-training process using Optimal Transport on
this distribution.

Section 3.2 starts from the observation of Wang and Isola (2020) that the classical
contrastive learning loss can be decomposed in two independent components. Indeed, it
can be written as the sum of an alignment loss and a uniformity loss on the hypersphere.
In existing methods, the uniformity loss is implemented in a contrastive manner by max-
imizing the pairwise spherical distance between each representation. We introduce a new
discrepancy between distributions on the hypersphere based on a sliced Optimal Trans-
port formulation on hyperspheres. It notably has a closed-form solution when computed
with respect to the uniform distribution on the sphere.

Then, in Section 3.3, we focus on the problem of Self-Supervised Learning for dense
tasks such as object detection. Indeed, most methods proposed in the literature focus
on generating image-level representations as opposed to patch or pixel level representa-
tions which are needed for dense tasks. Building upon the Dense Contrastive Learning
(DenseCL) method proposed by Wang et al. (2021), we investigate how Optimal Trans-
port can potentially improve the patch matching strategy in the loss for pre-training dense
image encoders.

Finally in Section 3.4, we discuss our results and their potential shortcomings com-
pared to existing methods in the literature.

3.1 Transporting between Samples and Features

3.1.1 Introduction

As seen in Subsection 2.1, Contrastive Self-Supervised Learning methods build a set of
positive and negative samples for each image in a batch. Since such methods are self-
supervised, the set of positives is often built from randomly augmented samples which gen-
erates positive views. Meanwhile, non-contrastive methods such as Barlow-Twins (Zbon-
tar et al., 2021) try to maximize the amount of information shared among representations
of positive samples by applying the information bottleneck to this random augmenta-
tion pipeline. In other words, it forces the cross co-variance matrix of the features to
become diagonal in order to remove the redundant information present in the models rep-
resentation. The key idea is that if an encoder model generates representation matrices
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whose rank is equal to the dimension of the ambient space, then the entire embedding
space is leveraged to maximize discrimination between samples. The relationship between
contrastive and non-contrastive approaches has been studied in Garrido et al. (2023).

Starting from a batch of augmented images, we evaluate how to enforce the model to
embed a view close to its corresponding positive. Instead of considering each view, its
positive and their own negative views as samples, we model the problem as a transport
problem where an entire batch can be seen as an empirical distribution drawn from the
underlying ground-truth distribution specific to the dataset. This model enables us to
leverage Optimal Transport and its variant in order to guide the pre-trained model to
generate more aligned representations.

A similar approach is employed by Shi et al. (2023) where authors leverage the inverse
Optimal Transport framework to extend and analyze the contrastive loss. The inverse
OT formulation aims to solve the problem of finding the ground cost which will yield a
transport plan as similar as possible as a target transport plan. The distance between
the current transport plan and the target transport plan can be measured with a distance
metric between distributions such as the Kullback-Leibler divergence. The authors also
regularize the transport plan to encourage a uniform distribution of representations as this
has been shown to be one of the required ingredient for successful Self-Supervised Learning
of image representations by Wang and Isola (2020). While inverse OT is commonly used
to optimize the ground cost matrix directly as part of a metric learning problem, Shi et al.
(2023) instead optimize an image encoder model to produce representations that would
generate the corresponding ground cost matrix.

More recently, Piran et al. (2024) proposed another self-supervised objective based
on multi-marginal optimal transport to optimize the matching of more than two views
to clusters corresponding to a single sample. Instead of inverse OT, they leverage the
so-called Monge gap (Uscidda & Cuturi, 2023) which quantifies how much an estimated
transport plan differs from an expected transport plan and can be used to train deep
neural networks to embed samples that can then be transported accordingly.

Finally, in the context of language image pre-training, where the contrastive loss is
also used (Radford et al., 2021), Shi et al. (2024) have made the connection between the
contrastive loss and OT by integrating different variants such as Entropic OT (Cuturi,
2013), or Fused GW (Vayer et al., 2020). This transport formulation seems to improve over
the contrastive loss in different mixed visual/language pre-training benchmarks. Given
a target transport plan which is diagonal, as each image should be matched with its
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corresponding text line, they jointly optimize both image and text encoders to produce
representations that lead to a diagonal transport plan. The loss minimizes the Kullback-
Leibler between the resulting transport plan and the diagonal ground-truth matrix.

In our case, we focus on the classical self-supervised setting. Where for each sample,
two augmented views are created using random augmentations. Our starting point is
indeed the simple contrastive pre-training framework from Chen et al. (2020a). Next, we
consider the other side of the coin, which are non-contrastive methods such as Barlow-
Twins (Zbontar et al., 2021) where the loss acts on correlations between features instead
of samples. Finally, armed with methods from the OT literature, we propose a self-
supervised method which combines these two viewpoints.

3.1.2 Methodology

A Contrastive Perspective. To introduce this section, we would like to consider the
construction of the positive and negative sets for contrastive learning. It is known that
choosing better negative samples can indeed improve the final performance of a self-
supervised model (Robinson et al., 2020). In fact, in the worst case possible, the negative
set is composed solely of samples from the same class as the anchor sample which prevents
the model from learning discriminative representations. However in practice, the negative
set contains samples from other classes and it therefore remains less costly to embed
samples from the same class closer to the anchor sample even though they are negatives to
each other. This phenomenon is one reason for the large batch size required for contrastive
learning or the need for a queue of negative samples (He et al., 2020) which will introduce
more class variety in the negatives set, making it more representative of the whole dataset.

zA zB

zA

zB

P ⋆

Figure 3.1: A permutation
matrix P ⋆ (N = 10).

The contrastive loss as described by Chen et al. (2020a)
corresponds to softmax normalizing a pairwise similarity ma-
trix for each row and then maximizing the resulting proba-
bility of the positive using the cross-entropy. We recall the
NT-Xent loss in the following equations:

l(z, z+, z−) = − log exp(⟨z, z+⟩/τ)∑
z′∈z−∪{z+} exp(⟨z, z′⟩/τ)

, (3.1)

LNT-Xent = 1
2N

∑
z,z+,z−

l(z, z+, z−), (3.2)
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where z is an augmented view with z+ its positive and z− its set of negatives.
Our idea is to leverage Optimal Transport in order to

compute matching probabilities instead of using the row-wise
softmax normalization. Instead of building a similarity matrix which is then normalized,
we build a distance matrix which is used to compute an Optimal Transport transport
plan. Our proposed approach can find parallels in Sinkformer (Sander et al., 2022) which
replaces the softmax matrix in the self-attention layer of transformers with an OT plan
(i.e. a bi-stochastic matrix). The difference in this case is that the desired OT plan (i.e.
the ground truth matching) is known and given by the random augmentation process.

Thus, our goal is to train the model to output representations which will result in
an empirical optimal transport plan as close as possible to the known matching. This
problem statement is known as inverse Optimal Transport because of being interested in
the transport cost, the matching is known and we want to find a distance matrix that will
lead to the known transport plan. In case of a transport from a batch of N augmented
views zA to other augmented views zB from the same sample, the known optimal matching
is therefore the diagonal permutation matrix. Each view zA

i should be transported to its
corresponding zB

i . If we take the formulation of computing a transport plan between all
images and not only from zA to zB by building a 2N ×2N cost matrix as done for Equation
2.4, then the optimal matching is a permutation matrix where the outer diagonals are
non-zero, that is, P ⋆

i,j > 0 if i = j − N or i = j + N . The structure of the permutation
matrix P ⋆ can be seen in Figure 3.1. In order to prevent the distance matrix from having
a diagonal filled with the value d(x, x) = 0, its diagonal is artificially filled with the value
Ci,i = +∞, ∀i ∈ [1, . . . , 2N ].

Given a set of N unlabelled images x, we generate two augmented views using a set of
random augmentations xA

i = TA(xi) and xB
i = TB(xi). These augmented views are then

embedded in latent space Sd−1 using an encoder model fθ : I → Rd where I is the space of
input images, followed by a normalization to make sure that the norm of representations
is equal to 1. Thus, we define zA

i = fθ(xA
i )

∥fθ(xA
i )∥ and zB

i = fθ(xB
i )

∥fθ(xB
i )∥ . A ground cost between

representations can be computed using the cosine distance:

Cij = 1 − ⟨zA
i , zB

j ⟩, ∀i, j ∈ [1, N ] × [1, N ]. (3.3)

Since we compute a matching plan between the two distributions of augmented views,
we define the respective marginals a and b as uniform distributions. As such, each view
is given the same amount of probabilistic mass as others and the resulting transport plan
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for exact optimal transport can be a permutation matrix akin to a solution of the linear
assignment problem (Kuhn, 1955).

The Optimal Transport plan between zA and zB is defined as:

π⋆ = argmin
π∈U(a,b)

⟨π, C⟩F , (3.4)

where U(a, b) refers to the set of couplings with marginals equal to a and b, respectively.
Now, in order to enforce the transport plan to correspond to the known permutation

matrix between samples with the full outer diagonals P ⋆, we minimize the cross-entropy
between the joint distribution described by π⋆ and the matching:

LSamples(θ) = −
N∑

i=1
log π⋆

i,i+N + log π⋆
i+N,i. (3.5)

Since the loss depends solely on the transport plan, it needs to be differentiable in order
to be able to compute a gradient for the model’s weights. As such, we solve the Optimal
Transport from Equation 3.4 in its entropically regularized variant (see Subsection 2.3.1).
On the other hand, exact OT would yield a sparse permutation matrix which would not
be differentiable. In fact, with exact OT, LSamples would be equal to +∞ in the case
where even one assignment does not satisfy the ground-truth matching. In the entropic
variant, instead of a sparse transport plan, the resulting joint distribution can be smoother
depending on the value of the ϵ parameter which regulates the importance given to the
entropy of said transport plan:

π⋆ = argmin
π∈U(a,b)

⟨π, C⟩F − ϵH(π), (3.6)

and more importantly, the transport plan becomes differentiable and the computed cross-
entropy loss is finite since the support is dense. Following this formulation of our OT
based contrastive objective, we investigate the other paradigm in joint-embedding meth-
ods which is non-contrastive methods in which we believe OT methods can provide im-
provements.

Transport between Features. The other side of the coin in joint-embedding meth-
ods are non-contrastive objectives such as Barlow-Twins (Zbontar et al., 2021) (see Sub-
section 2.1). Instead of using a contrastive loss, the Barlow-Twins objective tries to make
the model produce representations which have de-correlated features. This objective has
two effects, since the cross-correlation is computed between two augmented batches of
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views zA and zB (see Equation 2.6) then the objective implicitly aligns representations
for augmented pairs (zA

i , zB
i ) of the sample xi. The second effect is that of leveraging the

entire embedding space by limiting the correlation between features by minimizing the
terms of the cross-correlation matrix which are not in the diagonal because they measure
the cross-correlation of two different features (see Equation 2.5). Instead of this cross-
correlation based objective, we propose to use Optimal Transport to compute matching
between features and as with the contrastive case, we would want each feature in zA to be
transported to the corresponding feature in zB. In this setting, we define a distance metric
between features (i.e. variables) instead of samples inspired by the cross-correlation from
Equation 2.6:

Cij = 1 −
N∑

b=1
zA

biz
B
bj, ∀i, j ∈ [1, d] × [1, d], (3.7)

where d corresponds to the number of variables of the latent representations such that
zA

i ∈ Sd−1. In this case, instead of being of size 2N × 2N , the distance matrix is actually
of size d × d. As such, the optimal matching is actually a diagonal permutation matrix.
We then can compute an optimal transport plan between features using this ground-cost
matrix similarly to Equation 3.4. With the resulting variable-to-variable transport plan,
the loss is to again minimize the anti-diagonal terms, thus maximizing the assignment of
features to their known counterpart in the target augmented set zB. With this approach,
the hypothesis that the cross-correlation used in Barlow-Twins is a too aggressive regular-
ization for a self-supervised objective and that instead that having feature correlations in
such a way that their are c-cyclically monotone may be enough. We refer to this objective
as LFeature which can be noted as such:

LFeature = −
d∑

i=1
log π⋆

i,i, (3.8)

where in this case π⋆ is the transport plan between features. It is computed with respect
to the ground cost matrix C defined in Equation 3.7.

Unifying Contrastive and Non-Contrastive Formulations. Our next step in
the research process is trying to unify both formulations since they only are transposed
versions of each other. That is, can we train an encoder model to produce representations
whose sample-wise transport is diagonal and its feature-wise transport plan is diagonal
as well?
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One tool in the Optimal Transport toolbox that was presented in Section 2.3 which
can solve such problems is Co-Optimal Transport (COOT) (Redko et al., 2020) (see
Subsection 2.3.4). Indeed, recall that COOT computes both a sample-to-sample and
a feature-to-feature transport plan in a joint manner such that the transport cost is
minimized between the linear projection of the source distribution through the feature
plan and the target distribution. The objective then becomes to have the two jointly
optimized transport plans diagonal by minimizing anti-diagonal terms in each plan. The
sample-to-sample plan and the variable-to-variable transport plan are called πs and πv

respectively. They can be obtained by finding an optimal solution to the following COOT
problem:

min
πs∈U(µ,ν)
πv∈U(a,b)

∑
i,j,k,l

L(zA
i,k, zB

j,l)πs
i,jπ

v
k,l. (3.9)

Following this definition, the COOT-based objective is defined as:

LCOOT(θ) = −λSamples

N∑
i=1

(
log πs

i,i+N + log πs
i+N,i

)
− λFeatures

d∑
i=1

log πv
i,i, (3.10)

similarly to the sample and feature-wise counterparts but with an added λSamples and
λFeatures to weight between the two terms. Note that since COOT solves a series of OT
problems as part of its optimization process (Redko et al., 2020), one can use entropic
optimal transport in the inner loop of the algorithm. In this case, the value of the entropic
regularization parameter ϵ needs to be adjusted.

3.1.3 Experiments

In order to evaluate the performance of our optimal transport based self-supervised losses,
we first pre-train an encoder. Then, given its frozen weights, we apply the linear probing
protocol by training a linear classifier on top. Once trained, we evaluate the performance
of the linear classifier on the test set of the dataset. Results can be seen in Table 3.1. We
train and evaluate the performance of methods on the CIFAR10 (Krizhevsky, 2009) and
STL10 (Coates et al., 2011) datasets.

The CIFAR10 dataset is composed of 60 000 images distributed among 10 classes
each of size 32 × 32 pixels. Its small scale makes it an interesting choice to test the initial
performance of a self-supervised method.
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The STL10 dataset is composed of 100 000 unlabelled images extracted from the larger
ImageNet dataset, it also contains a training split with 500 training images distributed
among 10 classes. All images are coloured and of size 96 × 96 pixels. The unlabelled split
makes the STL10 a dataset of choice to test the performance of self-supervised methods
since the self-supervised pre-training can be done on the unlabelled and training splits
whereas the downstream finetuning or linear classification is trained only on the labelled
training split. Authors have mentioned that the dataset is inspired by the CIFAR10
dataset.

We perform self-supervised pre-training on different SSL methods, namely SimCLR (Chen
et al., 2020a), Barlow-Twins (Zbontar et al., 2021) and Maximum Manifold Capacity Rep-
resentation (Yerxa et al., 2023). For each methods, we use a batch size of 1024 samples.
For Barlow-Twins, the λ is set to 0.0051 as proposed in the original paper. For LFeature

and LSample, we set the ϵ of the entropic OT solver to 0.01 with 5 iterations. For LCOOT,
we pick λSamples = λFeatures = 1 for simplicity. The resulting pre-trained models are then
compared on evaluation benchmarks. In order to evaluate, we compare the models on a
finetuning benchmark where the pre-trained weights serve as initialization for a finetuning
over the entire labelled dataset. We also perform an evaluation on the linear evaluation
protocol where the self-supervised model weights are frozen and a simple linear classifier
is trained on top of these representations (see Subsection 2.1 from more details). Results
for the linear evaluation protocol can be seen in Table 3.2. In this results, we can see that
non-contrastive methods such as Barlow-Twins (Zbontar et al., 2021) and MMCR (Yerxa
et al., 2023) perform better than other methods included in the benchmark, including our
proposed methods based on Optimal Transport without having as much hyper-parameters
as the OT based methods. Among OT based methods, the feature wise transport plan
yields the best performance. While the performance of the best OT method is on par
with SimCLR (Chen et al., 2020a) it does not reach the same performance as more recent
non-contrastive methods such as Barlow-Twins or MMCR.

3.1.4 Discussion

The results in these experiments are not able to show that these OT based objectives
perform better than current state-of-the-art methods. In this case, it seems that the
relaxed nature of the Optimal Transport based objectives does not provide a performance
improvement. We note that Shi et al. (2023) test only against contrastive methods such as
the triplet loss (Schroff et al., 2015) or SimCLR. Piran et al. (2024) focuses on the problem
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CIFAR10 STL10
Method Acc@1 Acc@5 Acc@1 Acc@5

SimCLR (Chen et al., 2020a) 74.17% 98.55% 59.24% 96.63%
Barlow-Twins (Zbontar et al., 2021) 87.65% 99.67% 73.78% 98.70%
MMCR (Yerxa et al., 2023) 88.11% 99.79% 80.44% 99.14%
LFeature 82.71% 99.45% 71.44% 98.49%
LSample 77.45% 98.70% 71.63% 98.34%
LCOOT 75.20% 98.56% 42.84% 93.29%

Table 3.1: Finetuning accuracy results. Acc@1 refers to the top-1 accuracy while Acc@5
corresponds to the top-5 accuracy.

CIFAR10 STL10
Method Acc@1 Acc@5 Acc@1 Acc@5

SimCLR (Chen et al., 2020a) 73.90% 98.21% 54.53% 95.79%
Barlow-Twins (Zbontar et al., 2021) 82.67% 99.37% 70.86% 98.69%
MMCR (Yerxa et al., 2023) 84.06% 99.27% 73.18% 98.53%

LFeature 81.34% 99.23% 73.41% 98.68%
LSample 81.29% 99.32% 68.78% 98.00%
LCOOT 52.05% 94.31% 40.85% 92.31%

Table 3.2: Accuracy results on the linear evaluation protocol. Acc@1 refers to the top-1
accuracy while Acc@5 corresponds to the top-5 accuracy.

of more than two views and exhibits better performance in this case than SimCLR and
BYOL (Grill et al., 2020). As such, we recon that solely optimizing the transport plan
may not be enough and that instead it could be combined with the distance matrix.
Optimizing with the distance matrix would have a more direct effect on the representations
than using only the transport plan in the objective. We also can see that OT methods
have successfully been used to formulate pseudo-labels in SwAV (Caron et al., 2020) and
Dino-v2 (Oquab et al., 2023) where the online branch is trained to predict such pseudo-
labels. So our approaches may yield better results when used with a similar an asymmetric
setup with an online branch and an offline branch updated with an Exponentially Moving
Average (EMA).

In the next section, we consider the contrastive learning from another viewpoint.
Indeed, the contrastive loss can be decomposed in two components. For one of those, a
variant of Optimal Transport turns out to be a natural fit.
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3.2 Hyperspherical Uniformity using Spherical Sliced
Wasserstein

3.2.1 Introduction

As seen in Section 2.1, many self-supervised methods rely on spherical projections to
compute distances between representations. This normalization enables usage of the so-
called cosine similarity as a measure of alignment between representations. The goal of
contrastive learning is both to pull representations of positive samples closer together
while pushing representations of so-called negatives further away on the hypersphere (i.e.
minimize alignment). Having only the first term maximizing the alignment of positives
would not be enough since it can be minimized in a trivial manner. Indeed, if the encoder
model only outputs a constant representation independent of the input, then alignment
is maximized for every sample pairs but the representations lose their informative nature
and cannot be used to solve a downstream task. As such, negatives are used to prevent
the model representations from collapsing to a single point.

The contrastive objective from (Chen et al., 2020a) shown in Equation 2.4 can be
rewritten in two terms, one for the positives and another for the negatives:

LNT-Xent = − 1
2N

∑
z,z+,z−

log
(

exp(⟨z, z+⟩/τ)∑
z′∈z−∪{z+} exp(⟨z, z−⟩/τ)

)
(3.11)

= − 1
2N

∑
z,z+,z−

log(exp(⟨z, z+⟩/τ)) − log

 ∑
z′∈z−∪{z+}

exp(⟨z, z−⟩/τ)

 (3.12)

= − 1
2N

∑
z,z+,z−

⟨z, z+⟩/τ︸ ︷︷ ︸
Alignment

− log

 ∑
z′∈z−∪{z+}

exp(⟨z, z−⟩/τ)


︸ ︷︷ ︸

Uniformity

. (3.13)

These two terms lead Wang and Isola (2020) to investigate the impact of each. They
suggest that two ingredients are required to perform representation learning successfully
with positives, Alignment and Uniformity as can be shown in Equation 3.13 for the
NT-Xent loss. Alignment means making representations of positive samples closer by
maximizing the cosine similarity between z and z+ in this case. The second one prevents
the sample from collapsing to a single point. They call this term uniformity. Unlike
SimCLR (Chen et al., 2020a), they propose an uniformity term based on maximizing
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the Gaussian potentials between pairwise points. The two objectives proposed by these
methods are based on pairwise distance maximization between representations of nega-
tives. This lead us to investigate the use of a uniformity metric which is not solely based
on pairwise distance maximization but leverages a divergence with the hyperspherical
uniform distribution instead.

3.2.2 Spherical Sliced Wasserstein

The Spherical Sliced Wasserstein (SSW) distance (Bonet et al., 2023b) is a distance
between distributions embedded on the hypersphere which leverages the sliced optimal
transport distance on the circle (Delon et al., 2010). On the circle, the optimal transport
plan is also easier to compute similarly to the real line. It requires computing the empirical
quantile functions but additional precaution is required because of the circular nature of
the space and therefore one could start the optimal transport assignment at any point
of the circle. An example of circular Optimal Transport problem between two simple
empirical distributions can be seen in Figure 3.2.

Figure 3.2: A simple empirical Optimal Transport problem on the circle S1.

Unlike the Sliced Wasserstein distance defined in Equation 2.28, SSW uses projections
on the circle. Therefore, similarly to SW, SSW is defined for p ≥ 1 between locally
absolutely continuous measures µ and ν as an integral over all directions:

SSWp
p(µ, ν) =

∫
Sd

Wp
p(P̊ θ

#µ, P̊ θ
#ν)dθ, (3.14)

where P θ
# is the geodesic projection on the great circle generated by θ and then projected

onto S1 (i.e. the circle). This projection is defined as:

P̊ θ(x) = θ⊤x

∥θ⊤x∥
. (3.15)
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An example of the great circle projection applied to points located on the sphere can
be seen in Figure 3.3.

Figure 3.3: The great circle projection P̊ θ(x) on a set of points located on the sphere S2.

In Equation 3.14, the Wasserstein distance is defined with the geodesic distance on
the circle which measures the length of the arc between two points. When dealing with
empirical distributions, SSW can be estimated by computing the expectation over a set
of L ≥ 1 uniformly sampled directions θi ∼ Unif(Sd), i ∈ {1, . . . , L} in a similar manner
as the Sliced Wasserstein distance presented in Equation 2.29:

SSWp
p(µ, ν) = 1

L

L∑
i=1

Wp(P̊ θi

# µ, P̊ θi
# ν) (3.16)

Interestingly for us, SSW has a closed-form solution when the Spherical Sliced Wasser-
stein distance is taken between an empirical distribution and the uniform distribution on
the hypersphere. Indeed, the push forward through P̊ θ of the spherical uniform distribu-
tion ν = Unif(Sd−1) remains a uniform distribution on S1.

This naturally leads us to leverage SSW for Self-Supervised Learning using the uni-
formity loss presented in Table 3.3 which has a lower computational complexity than the
other uniformity losses used in (Chen et al., 2020a; Wang & Isola, 2020) since they are
based on pairwise comparisons and therefore scale non-linearly with regard to the number
of samples.

A simple choice for the alignment loss is to minimize the mean squared Euclidean dis-
tance between pairs of different augmented versions of the same image. A Self-Supervised
Learning network is pre-trained using this alignment loss to which is added an uniformity
term. Our overall self-supervised loss can be defined as:
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Method Luniform(zA) + Luniform(zB) Complexity

SimCLR (Chen et al., 2020a) 1
2N

∑N
i=1 log∑j ̸=i exp( ⟨ẑi,ẑj⟩

τ
), ẑ = cat(zA, zB) O(N2d)

Wang and Isola (2020) ∑
z∈{zA,zB} log 2

n(n−1)
∑

i>j exp(−t∥zi − zj∥2
2) O(N2d)

SSW-SSL (Ours) 1
2(SSW2

2(zA, ν) + SSW2
2(zB, ν)) O(LN(d + log N))

Table 3.3: Comparison of contrastive methods and their respective uniformity objective
where zA, zB ∈ Rn×d are representations from two augmented versions of the same set
of images and ν = Unif(Sd−1) is the uniform distribution on the hypersphere. L is the
number of projections for SSW.

LSSW-SSL = 1
N

N∑
i=1

∥zA
i − zB

i ∥2
2︸ ︷︷ ︸

Alignment loss

+λ

2
(

SSW2
2(zA, ν) + SSW2

2(zB, ν)︸ ︷︷ ︸
Uniformity loss

)
, (3.17)

where zA, zB ∈ Rn×d are the representations from the network projected on the hyper-
sphere of two augmented versions of the same images, ν = Unif(Sd−1) is the uniform
distribution on the hypersphere and λ > 0 is used to balance the two terms.

3.2.3 Experiments

Method Encoder output S2

Supervised 82.26 81.43

SimCLR (Chen et al., 2020a) 66.55 59.09
Wang and Isola (2020) 60.53 55.86
SW-SSL, λ = 1, L = 10 62.65 57.77
SW-SSL, λ = 1, L = 3 62.46 57.64
SSW-SSL, λ = 20, L = 10 64.89 58.91
SSW-SSL, λ = 20, L = 3 63.75 59.75

Table 3.4: Linear evaluation on the CIFAR10 (Krizhevsky & Hinton, 2009) dataset.
The features are taken either on the encoder output or directly on the sphere S2. The
supervised method results show the upper bound of the performance.

As an experiment, we evaluate the encoder performance on linear classification after
self-supervised pre-training. We test using our proposed LSSW-SSL and a variant of it which
relies on the Sliced Wasserstein (SW) distance between the point clouds an the uniform
distribution on the hypersphere which we refer to as LSW-SSL. We use a ResNet18 (He et
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al., 2016) encoder which outputs 1024 features that are then projected onto the sphere S2

using a last fully connected layer followed by a ℓ2 normalization. We pretrain the model
for 200 epochs using minibatch stochastic gradient descent (SGD) with a momentum of
0.9, a weight decay of 0.001 and an initial learning rate of 0.05. We use a batch size of
512 samples. The images are augmented using a standard set of random augmentations
for SSL: random crops, horizontal flipping, color jittering and gray scale transformation
as done in Wang and Isola (2020). For the trade-off parameter λ, we λ = 20 for SSW
and λ = 1 for SW. To evaluate the performance of representations, we use the common
linear evaluation protocol where a linear classifier is fitted on top of the pre-trained repre-
sentations and the best validation accuracy is reported. The linear classifiers are trained
for 100 epochs using the Adam (Kingma & Ba, 2014) optimizer with a learning rate of
0.001 with a decay of 0.2 at epoch 60 and 80. We compare our methods with two other
contrastive objectives, Chen et al. (2020a) with the normalized temperature-scaled cross-
entropy (NT-Xent) loss and Wang and Isola (2020) which proposes to decompose the
objective in two distinct terms Lalign and Luniform. We recall the respective uniformity loss
of each method in Table 3.3. As one can see in Table 3.4, our method achieves here com-
parable performances to two state-of-the-art approaches, yet slightly under-performing
compared to Chen et al. (2020a). We suspect that a finer validation of the balancing pa-
rameter λ is needed. Especially since the representations on Figure 3.4 are not completely
uniformly distributed around the sphere after pre-training compared to other contrastive
methods.

3.2.4 Discussion

While the accuracy scores are interesting when performing classification directly on the
sphere, SSW does not show a performance superior to other uniformity methods based
on contrastive interactions between samples. Nevertheless, these results show that other
metrics can be explored to enforce uniformity on the hypersphere to create promising
contrastive learning approaches without explicit distances between negative samples.

After having investigated regular image-level self-supervised methods, we turn to pre-
training methods for dense tasks such as object-detection or semantic segmentation in the
next section.
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(a) SSW-SSL. (b) SW-SSL.

(c) Wang and Isola (2020). (d) SimCLR (Chen et al., 2020a).

(e) Supervised prediction. (f) Random initialization.

Figure 3.4: The CIFAR10 (Krizhevsky & Hinton, 2009) validation set on S2 after pre-
training.
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3.3 Robust Self-Supervised Object Detection

3.3.1 Introduction

As seen in Section 2.1, self-supervised methods have achieved great success at learning
discriminative image-level representations without relying on human provided annotations
but rather by generating its own pseudo-labels to use in a self-defined training objective.
Models pre-trained in a self-supervised fashion can then be used in a variety of downstream
tasks oftentimes with better performance than training from scratch or leveraging an off-
the-shelf model pre-trained on a larger dataset such as the ImageNet dataset (Russakovsky
et al., 2015).

However, when self-supervised models trained using joint-embedding methods are
tested on dense downstream tasks (i.e. object detection, semantic segmentation,. . . ),
the performance increase is not as important as for image-level downstream tasks such as
image classification. Indeed, almost all proposed self-supervised objectives focus on gener-
ating discriminative image-level representations. Moreover, the transformation invariance
which is mandated by joint-embedding methods (see Section 2.1) forces models trained in
a self-supervised fashion to generate spatially invariant representations in order to align
representations from images with different viewpoint of the same sample. This spatial in-
variance goes against the requirement for dense tasks which require discriminative patch
or pixel level representations. As such, Wang et al. (2021) propose a self-supervised ob-
jective which trains an image encoder to produce better spatial representations suited for
dense tasks. Authors introduce a new self-supervised objective which operates between
image patches unlike image-level methods which operate on a single representation per
image. They name their proposed method Dense Contrastive Learning (DenseCL).

When training a convolutional neural network as a dense image encoder, generating
dense representations essentially means extracting features before the last global pooling
layer. In the context of Vision Transformer (ViT) (Dosovitskiy et al., 2020), patches
are naturally represented by each of the visual tokens extracted from the image. Each
element of these representations can be traced back to its original patch in the image. The
goal of such dense methods is therefore to produce discriminative representations at the
patch level to finally use them in tasks such as object detection or semantic segmentation
where discriminative representations at the patch level are important for correct image
localization.

Finding Positive Patches. Consider a dense image encoder fθ : Rc×h×w → Rc×h×w,
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which generate dense representation for images. Similarly, to image-level Self-Supervised
Learning, for each image, augmented views are generated which are then fed in the encoder
zA

i = fθ(T A(xi)), zB
i = fθ(T B(xi)). For each patch j in augmented view zA

i of sample i, a
corresponding patch t+ to be used as positive is searched in the positive view zB

i :

t+(j) = argmax
k

sim(zA
i,j, zB

i,k), (3.18)

where sim(·, ·) corresponds to the cosine similarity. This positive patch is then used during
training as a form of pseudo-label as a positive in a dense contrastive loss whose definition
is:

LDense(zA, zb; θ) = −
N∑

i=1

h×w∑
j=1

log
( exp(sim(zA

i,j, zB
i,t+(j))/τ)∑N

k=1 exp(sim(zA
i,j, zB

k )/τ)

)
, (3.19)

where zB
k is a shorthand notation for the image-level representation of sample k augmented

with B.
This matching strategy between patches is simple yet effective and improves the per-

formance of image-level methods on dense downstream tasks with several points. But
this strategy can also result in sub-optimal matching between patches. Indeed, consider
the case where the two augmented views have been generated with only a single overlap-
ping area. Each augmented view therefore has exclusive patches which are not present
in the other view. Following the matching rule from Equation 3.18, each patch will be
matched with its most similar in the other augmented view even though this may not
make semantic sense because the loss forces two unrelated patches to have more similar
representations.

Another problem encountered by the authors is that of "the chicken and egg" problem.
In simple terms, the signal provided by the matching part is initially random during the
training and cannot really be relied upon to self-improve the model. However, once the
model has trained for long enough, the matching signal can be more reliably used to
further improve the model. Therefore, the dense objective is supported by using a global
contrastive objective which we refer to as the Global loss:

LGlobal(zA, zB; θ) = −1
N

N∑
i=1

log
(

exp(sim(zA
i , zB

i )/τ)∑N
j=1 exp(sim(zA

i , zB
j )/τ)

)
. (3.20)

The model is therefore trained with a loss that combines both LDense and LGlobal with
an equal weight during the training.
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3.3.2 Optimal Matching

In order to alleviate these problems, we choose to rely on Optimal Transport to improve
the patch matching part of the algorithm. That is, instead of making each patch closer
to its most similar patch in the other image, we formulate the matching problem as an
Optimal Transport one. The first key observation is to consider a dense representation
of an image as a distribution of patches. OT then integrates nicely in this framework by
providing a natural way to compute a distance between two dense image representations.
One can then naturally compute an OT distance between the two augmented views zA

and zB. Starting by computing the distance matrix between patch representations in each
views:

Ci,j = −sim(zA
i , zB

j ). (3.21)

And then find a solution to the OT problem between the two distributions with uniform
marginals a, b respectively:

π⋆ = argmax
π∈U(a,b)

⟨C, π⟩F . (3.22)

The resulting transport plan can be used as an alternative matching strategy to the
one described in Equation 3.18:

ot+(i, j) = argmax
k,l

π⋆
(i,j),(k,l). (3.23)

On its own, this strategy does not offer better matching than the one described in
Equation 3.18 which was proposed in (Wang et al., 2021). Indeed, with this new strategy
the overall cost between patches is actually higher since Equation 3.18 essentially describes
a relaxation of marginals in Equation 3.22. A comparison of the resulting match on a toy
point-cloud can be seen on Figure 3.5.

Therefore, we decide to leverage Unbalanced Optimal Transport in a refined matching
strategy. As explained in Subsection 2.3.3, UOT computes an optimal transport plan
which does not strictly need to respect the marginals in the case where it is too costly to
transport mass between samples. Consider the following case, an image with two objects
is augmented is two views using random augmentations which include random cropping.
However, the random cropping generate one view with object A and another view with
object B with little to no overlap between the two images. With the most-similar patch

64



Optimal Transport for Self-Supervised Learning

(a) Matching strategy based on most simi-
lar patch from Equation 3.18.

(b) Matching strategy based on the Opti-
mal Transport plan from Equation 3.23

Figure 3.5: Comparison of patch matching strategy, patch representations from zA are
represented in blue while patch representations from zB are represented in red, an edge
between two patches signifies that the two patches are matched.

matching strategy, patches from one view could be matched to patches in the other view
even though they have no semantic relationship, and only because they happen to be most
similar. On the contrary, using Unbalanced Optimal Transport allows patches which are
too dissimilar to patches in the other images to not be matched and to not have as much
impact in the dense contrastive loss computation. A visual interpretation of such problem
can be seen in Figure 3.6.

A Soft Contrastive Loss. One difference between the hard matching from maximum
in Equation 3.18 and using OT for matching is that OT-based matching provides the
model with a soft-matching. Indeed, multiple patches can be matched with an anchor
patch. Said differently, the probabilistic mass of a given anchor patch can be transported
to multiple other target patches in the other view. This soft-matching allows us to do a
modification to the contrastive loss as we know it by using the amounts of probabilistic
mass transported as a target vector for each anchor patch. We name this modified loss
LSoft-Dense as it target soft labels instead of hard ones, its formulation is based on the
cross-entropy between the target vector which is a row of the matching optimal transport
plan and the softmax of the distances with the corresponding plans:

LSoft-Dense(zA, zb; θ) = −
N∑

i=1

h×w∑
j=1

h×w∑
k=1

(h×w)×π⋆
j,k log

(
exp(sim(zA

i,j, zB
i,k)/τ)∑N

l=1 exp(sim(zA
i,j, zB

l )/τ)

)
. (3.24)

One can see that having a sparse transport plan which is a permutation matrix will
recover LDense from Equation 3.19 since for each row i of π⋆ there will only be one j such
that π⋆

i,j = 1. This difference is identical to that between categorical cross-entropy and
cross-entropy where labels are one-hot encoded in classification.
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(a) Matching with argmax.

(b) Matching with Unbalanced Optimal Transport.

Figure 3.6: Example of augmentation that could be problematic for the cropping aug-
mentations. One of the views only contains the cat and not the dog. Therefore, patches
from the dog (represented in blue) will be matched to the most similar (for example back-
ground patches which are represented in red) whereas the cat patches effectively match
across the two views. With UOT, it is too costly to transport patches from the dog to
the background and therefore they do not participate in the dense contrastive loss.
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Method AP AP50 AP75

Global Only 46.42 72.45 49.74

DenseCL 53.18 79.50 58.68
Uniform 52.06 78.40 56.72
Unbalanced OT (λ = 0.05) 52.84 79.17 58.05
Unbalanced OT 52.50 78.96 57.21
Exact OT 52.38 78.38 58.03
Entropic OT (ϵ = 10) 52.18 78.52 56.69
Entropic OT (ϵ = 1000) 52.23 78.69 56.67

Table 3.5: Object detection results on the Pascal VOC 2007 test dataset.

3.3.3 Experiments

In order to experiment whether or not this optimal transport-based matching strategy
improves the final performance of the model, we perform pre-training experiments on the
COCO dataset (Lin et al., 2014). After pre-training the model with a mixture of dense
contrastive loss and image level contrastive loss, the model is finetuned to the task of
object detection on the Pascal VOC dataset (Everingham et al., 2015) on the 2007 and
2012 splits and finally the performance of the model is evaluated on the Pascal VOC
2007 test dataset. The backbone model is a ResNet50 (He et al., 2016) model which is
complemented with the relevant head in order to be able to perform object detection.

The results of the experiments can be seen in Table 3.5. The baseline method is
running only with the global level self-supervised loss for which we can see that the
performance is not on par with model pre-trained on dense methods. However, when
comparing the different matching strategy and their associated performance, we can see
that the choice of matching strategy does not affect the performance in a significant
manner. Moreover, choosing a completely uniform matching plan π⋆

ij = 1
h×w does not

result in a particularly worse performance compared to other OT-based methods. As
such, it seems that indeed maximum is a good matching strategy proposed by Wang et
al. (2021) as OT-based methods introduce hyper-parameters that are hard to tweak since
training happens in a self-supervised setting where one cannot always get his hands on a
validation set to finetune the hyper-parameters.
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3.3.4 Discussion

Compared to the maximum similarity matching strategy proposed in DenseCL, OT based
matching does not improve the final performance. Firstly, the added complexity and
hyper-parameters introduced by the different variant make it hard to tune compared to
the parameter-less maximum similarity matching. Because it is a self-supervised methods,
it first must be pre-trained before being able to evaluate the performance needed to judge
a method. As such, since dense downstream tasks are more computationally expensive,
fewer experiments can be performed to investigate other options. Given our results, we
can consider that since a uniform matching and exact optimal transport yield similar
performances, any complete Optimal Transport method is unlikely to yield much better
results, and that future efforts should be focused on the unbalanced variants. From this
observation, we can question if this is a manifestation of the so-called "Chicken and Egg"
problem where a sparse transport plan would penalize the model early in its training be-
cause of its inaccuracies, on the other hand a completely uniform transport plan gives no
specific signal but to cluster all patches from the same image together which has a neutral
effect with respect to the image-level objective. As such, one possible area of research
would be to investigate if these transport based matchings could improve the performance
of an encoder model already trained using the classical DenseCL method. Even if the ben-
efits from OT to augment the DenseCL method are not so clear, there are still interesting
research avenues for dense Self-Supervised Learning and Optimal Transport, especially
with the recent rise in popularity of Vision Transformers (Dosovitskiy et al., 2020) for
which the modeling of an image as a distribution of patches comes naturally (Sander
et al., 2022).

3.4 Conclusion and Discussion

Its increasing popularity in machine learning makes of Optimal Transport a tool of choice
when developing self-supervised methods. As such, we have investigated its usage in
several key area of Self-Supervised Learning, being on the formulation of contrastive and
non-contrastive methods, as a objective to enforce hyperspherical uniformity, or as a
matching strategy between patches of augmented views for dense SSL. While the results
are not always able to supersede state-of-the-art methods in their respective area, OT
provides an interesting framework to tackle this issues. Since it is already successful in
a variety of existing self-supervised methods such as SwAV (Caron et al., 2020) or Dino-
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v2 (Oquab et al., 2023), we believe that optimal transport can still play an important
role in the future of self-supervised representation learning.

Our proposed methods introduce additional hyper-parameters to the model which
should be set for each dataset. However, running experiments in Self-Supervised Learning
is quite costly since one needs to do the long pre-training before the evaluation bench-
mark. As such, the performance cannot be evaluated during the pre-training phase. This
makes hyper-parameter tuning more compute intensive since there is no possibility of
exiting early of failed experiments. Also, we consider that tuning extensively in order
to maximize the performance on a single dataset to be oftentimes be too costly in term
of compute but also of energy consumed for our capabilities. We note that energy con-
sumed directly translates to carbon emissions which we would like to minimize in our
research. For example, pre-training a DenseCL model requires more than 20 hours on a
multi-GPU node. This computational cost has to be repeated for as many values of the
hyper-parameters tried. Finally, we remark that outside of academic benchmark datasets,
practitioners often do not have a complete enough training/validation set to perform a
valid hyper-parameter tuning.
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Following the background to self-supervised learning in Subsection 2.1, we now study
a specific task that is common in remote sensing, multi-modal image classification. This
section focuses on leveraging the multi-modal nature of remote sensing dataset to improve
the representation learning performance in both self-supervised and supervised classifica-
tion tasks. While most computer vision datasets and tasks focus on a single modality,
remote sensing datasets are sometimes multi-modal as their images have been captured
with different satellites. A multi-modal dataset has samples for which multiple modalities
are available. For example, a common instance of multi-modal datasets in remote sensing
is composed of images captured from the pair of Sentinel-1 and Sentinel-2 satellites. An
example of such a pair can be seen in Figure 4.1. In this section, we investigate how
SSL methods can be adapted to multi-modal remote sensing datasets. Interestingly, re-
mote sensing multi-modal datasets are often aligned, meaning that for a given sample all
modalities for the dataset are available. In this chapter, we explore and propose a method
to leverage this specificity in order to learn good representations for these pairs and to
perform multi-modal classification. First, in Section 4.1, we perform an analysis of the
state of self-supervised methods applied to uni-modal remote sensing datasets. Next, in
Section 4.2, we propose a framework for multi-modal self-supervised representation learn-
ing using a variant of contrastive learning. And finally, in Section 4.3, we generalize this
framework and apply it to the setting of supervised learning, improving upon the baseline
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(a) Sentinel-1. (b) Sentinel-2.

Figure 4.1: Example of a multi-modal pair of Sentinel-1 and Sentinel-2 images for a
sample of the Waste Water Treatment class extracted from the Meter-ML (Zhu et al.,
2022) dataset.

finetuning using categorical cross-entropy.

4.1 Uni-Modal Self-Supervised Learning in Remote
Sensing

Before evaluating the state of representation learning for multi-modal image classification,
we first investigate existing self-supervised techniques applied to uni-modal remote sens-
ing datasets. These datasets possess numerous differences with natural image datasets
and as such can require specific self-supervised pre-training methods (Berg et al., 2022;
Wang et al., 2022a) to reach improvements similar to those seen in the computer vision
literature (Jing & Tian, 2020).

In order to evaluate the state of off-the-shelf pre-training methods for remote sensing,
we perform self-supervised pre-training experiments on the Resisc-45 (Cheng et al., 2017)
(high resolution scenes) and the EuroSAT (Helber et al., 2019) (low resolution Sentinel-2
scenes). They are not the largest datasets in the remote sensing domain but the most
common ones that have been exploited in the literature for benchmarking, comparing and
reproducing results. Resisc-45 contains 31500 RGB images extracted from Google Earth
with 45 scene classes, each with 700 images. The images are of size 256 × 256 pixels and
the spatial resolution varies from 0.3m to 30m depending on the scene class. However,
the precise resolution of each image is unknown. In our experiments, we use the public
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train/validation/test split proposed by Neumann et al. (2019) which uses 60% (more than
18k) of the images for training, 20% (more than 6k) for validation and 20% for test. It
should be noted that Resisc-45 has very high intra-class and inter-class diversity, making
it a common benchmark to evaluate and compare scene classification methods.

The EuroSAT dataset is collected from Sentinel-2 images and contains 10 scene cate-
gories. We also apply the public train/validation/test split proposed by Neumann et al.
(2019) to perform experiments on this dataset, from which one could easily reproduce the
results. There are 16200 (60%) training images, 5400 (20%) validation images and 5400
(20%) test images. The dataset is proposed with the 13 spectral bands captured from the
Sentinel-2 sensor. Each image has the size of 64×64 pixels and a spatial resolution of 10m.
The medium size and the interest in publicly-available Sentinel-2 data make EuroSAT a
popular low-resolution dataset to conduct scene classification experiments.

For both datasets, we use only the RGB channels to be able to utilize methods from
the literature which are presented in Section 2.1. We pre-train models using the Sim-
CLR (Chen et al., 2020a) and MoCo-v2 (Chen et al., 2020b) for contrastive methods and
BYOL (Grill et al., 2020) and Barlow Twins (Zbontar et al., 2021) for non-contrastive
methods. To measure the performance of such methods, we use the linear evaluation pro-
tocol whereby models are first pre-trained in a self-supervised fashion and then a linear
classifier is trained on top of the frozen pre-trained models.

After training the linear layer, we evaluate the top-1 classification performance and
Cohen’s Kappa coefficient (κ) (Cohen, 1960) which takes into account the probability of
randomly selecting the ground truth value: κ ∈ [−1, 1] with 1 meaning a perfect prediction
and -1 means a completely different prediction. The numerical definition of the κ score can
be seen in Appendix A.2. Results can be seen in Table 4.1. As observed, self-supervised
methods perform much better than the randomly initialized model: 82.55%-85.37% com-
pared to 45.45% on Resisc-45 and 92.59%-95.59.37% compared to 63.48% on EuroSAT.
Meanwhile, the supervised ImageNet initialization performs on par or better than self-
supervised pre-training due to the fact that this model was trained on a huge number of
images (14 millions labelled images) against using only around 16k-18k images of each
studied dataset. On Resisc-45, it yields an accuracy about 5% higher than the best per-
forming SSL method (MoCo-v2). Nevertheless on EuroSAT, the two non-contrastive SSL
models (BYOL and Barlow Twins), both perform better than the ImageNet initialization.
One explanation could be the fact that the small size of EuroSAT images is not well-suited
for supervised ImageNet models (initially pre-trained on 224×224 pixel images) who tend
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to drop a lot of channels through the use of pooling layers. In the meantime, the SSL
models have been adapted to handle the small size of 64×64 pixels as previously described
in the experimental setup. EuroSAT also contains object which have a much smaller size
than on ImageNet’s natural images, thus requiring more fine-grained features. We note
that similar behaviors have been observed by Jain et al. (2022) on these two datasets. In
terms of comparing the four SSL methods, their behaviors are not the same on the two
datasets. MoCo-v2 gives the best score on Resisc-45 but its performance is lower than
BYOL and Barlows Twins on EuroSAT. Meanwhile, Barlow Twins performs very well on
EuroSAT but stands behind MoCo-v2 and BYOL on Resisc-45.

Pre-training method Resisc-45 EuroSAT
Acc. 100 × κ Acc. 100 × κ

Random initialization 45.65±0.84 43.43±0.89 63.48±0.16 59.33±0.19
ImageNet supervised 90.32±0.00 89.93±0.00 94.46±0.00 93.84±0.00

SimCLR (Chen et al., 2020a) 82.55±0.68 81.84±0.71 92.59±0.05 91.76±0.05
MoCo-v2 (Chen et al., 2020b) 85.37±0.15 84.78±0.15 93.78±0.07 93.08±0.08
BYOL (Grill et al., 2020) 85.13±0.07 84.52±0.31 94.92±0.12 94.34±0.13
Barlow Twins (Zbontar et al., 2021) 83.14±0.30 82.44±0.31 95.59±0.17 95.08±0.19

Table 4.1: Classification performance (accuracy and kappa (κ) coefficient) on the Resisc-
45 and the EuroSAT datasets under the linear evaluation protocol (3 runs). Best results
are displayed in bold while the second best are underlined.

While the linear protocol is a good measure of the discriminative qualities of an en-
coder’s representations, it is not the only commonly used benchmark for evaluating the
performance of SSL methods. As such, we also test the pre-trained models under the
benchmark of finetuning. This means that during the finetuning phase, model’s weights
are updated as well as those of a classifier on top of the representations. We perform this
benchmark under a varying amount of labelled data, that is, by using only 1%, 10% and
finally 100% of the available labels and samples.

The results from the finetuning experiments can be observed in Table 4.2. With this
setting, we again confirm the improvement from using SSL pre-training compared to ran-
dom initialization. Indeed, on the EuroSAT dataset with only 1% of labels, self-supervised
methods perform better than the randomly initialized model fine-tuned with 10% of la-
bels. Additionally, on the Resisc-45, self-supervised models also systematically yield a
better performance than randomly initialized models. Again, the ImageNet supervised
model outperforms the SSL models, especially on the high resolution Resisc-45 dataset
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when fewer labels are available. Meanwhile, the gap is not as large on the lower-resolution
EuroSAT due to the specific small size of the images. We also remark that when the num-
ber of labels increases (from 1% to 10%, then 100%), the performance gaps between the
random initialization, SSL models and ImageNet supervised become closer. However in
practice, finetuning strategy is usually adopted in the context of limited number of labels.
When compared against the model trained from scratch with a random initialization,
SSL methods are largely outperforming when the same number of labelled samples are
available. Therefore, in case that the ImageNet initialization is not a trivial option due to
weights not being available for a particular network architecture, using SSL pre-training is
a reliable alternative to improve the training performance without the need for additional
labels as also highlighted in the finetuning results from Jung et al. (2021). In our experi-
ments, MoCo-v2 and BYOL exhibit similar performance levels while SimCLR is slightly
under-performing. One reason might be the relatively low batch size of 512 used during
the pre-training. MoCo-v2 does not suffer as much from this low batch size because the
negative queue is still relatively large with 3072 samples. BYOL, being a non-contrastive
method, also suffers less from smaller batch sizes than standard contrastive approach like
SimCLR. We also find that the performance of the Barlow Twins pre-training seems to
be more reliant on hyper-parameters (i.e. learning rate value and scheduler) than the
other methods, leading to a more variable performance depending on the dataset and the
percentage of labelled samples for training.

Pre-training method Resisc-45 EuroSAT
1% 10% 100% 1% 10% 100%

Random initialization 32.39±0.69 67.68±0.39 91.05±0.32 53.64±0.38 76.76±0.67 96.49±0.03
ImageNet supervised 58.79±0.29 89.27±0.28 96.75±0.03 85.62±0.21 95.43±0.11 98.70±0.02
SimCLR (Chen et al., 2020a) 41.14±0.94 78.22±0.25 93.01±0.32 77.46±0.38 92.04±0.15 97.62±0.05
MoCo-v2 (Chen et al., 2020b) 50.83±0.39 80.71±0.16 93.45±0.38 82.67±0.06 93.06±0.18 98.15±0.07
BYOL (Grill et al., 2020) 49.30±1.64 78.92±0.11 93.39±0.20 82.74±0.43 94.15±0.35 98.36±0.04
Barlow Twins (Zbontar et al., 2021) 42.85±1.25 73.42±0.94 95.03±0.26 81.60±0.41 93.14±0.12 96.52±0.10

Table 4.2: Classification performance on the Resisc-45 and EuroSAT datasets under the
finetuning evaluation protocol (3 runs). Pre-trained models are fine-tuned with a limited
number of labelled samples (1%, 10% and 100% respectively). For each proportion of
labelled data, the best results are displayed in bold while the second best are underlined.

Transferring Representations. Following these experiments, we also investigate
the capability of self-supervised pre-training in a transfer setting. That is, does a self-
supervised model pre-trained on a dataset with similar but not identical visual features
can be used on another dataset? To this end, we perform transfer learning experiments
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where a model is first trained in a self-supervised fashion on a dataset and is then used
as a weights initialization for a subsequent dataset.

We compare this self-supervised model initialization with weights from a model that
was trained in a supervised manner on the initial dataset. As for the previous experiments,
we vary the percentage of labelled data. This variation highlights the relative performance
gap between the different models initializations. Indeed, experiments using less labelled
data will put more importance on the model initialization during finetuning. Experiments
are performed again between the Resisc-45 and EuroSAT datasets both using RGB images.
They both contain satellite images although with different resolutions and label sets.
Therefore a model trained on one dataset is unable to make predictions on the other
dataset.

The results for these experiments can be seen on Figure 4.2. The orange, blue and
green colors represent the performance using MoCo-v2, BYOL and supervised method
for pre-training respectively. Figure 4.2a shows the results observed when transferring
models Resisc-45 → EuroSAT whereas Figure 4.2b shows transfer performance of Eu-
roSAT → Resisc-45. One can see that indeed, when using a low amount of labelled data,
a performance difference between self-supervised and supervised model as initialization
is present. In fact, by training without labels, SSL approaches provide more generalized
features which are more relevant in downstream tasks with a domain shift, whereas su-
pervised models usually learn more dataset-specific representations. This confirms that
self-supervised models have better transfer capabilities than their supervised counterparts.
With larger quantities of labelled data, the gap between supervised and self-supervised
model initialization shrinks as the finetuning reaches its optimal performance.

Beyond ImageNet initialization. While these experimental results showcase the
performance of the so-called ImageNet initialization, pre-trained model weights are not
always available especially when images are not composed of RGB channels and of size
similar to ImageNet (224 × 224 pixels). Therefore, in the next sections of this chapter
we set to explore the setting of multi-modal classification on multispectral images which
have more than 3 channels and therefore where off-the-shelf models are not available to
provide a strong baseline initialization.
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(a) Pre-training on the Resisc-45 dataset and finetuning/evaluating on the EuroSAT dataset.
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(b) Pre-training on the EuroSAT dataset and finetuning/evaluating on the Resisc-45 dataset.

Figure 4.2: Comparison of finetuning performance of supervised and self-supervised mod-
els on another dataset.

4.2 Multi-Modal Self-Supervised Learning

4.2.1 Methodology

In Section 4.1, experiments show that ImageNet initialization remains a strong baseline
when pre-trained models are available. However, they are not always available as is the
case for multi-modal datasets where a sample is composed of multiple views from differ-
ent sensors. These sensor captures have been co-registered to cover the same location.
One task for such datasets is then to classify the nature of the sample from the multiple
captures. These pairs can then be seen as different views of the same location and in-
corporated in a self-supervised learning pipeline. In this section, we build upon existing
works (Jain et al., 2022; Scheibenreif et al., 2022b; Wang et al., 2022b) which focus on
learning on only two modalities to develop a framework for self-supervised pre-training
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across several image modalities. In our experiments, we work with up to three but there
could be an arbitrary number of modalities if available.

In this section, we focus on contrastive methods due to their popularity in SSL. Also,
they have been until now the most widely used SSL approaches in remote sensing (Berg
et al., 2022). The most common version of the contrastive loss is called NT-Xent (Chen
et al., 2020a). It maximizes the alignment between positive views from the same sample
while minimizing the alignment with views from other samples present in the same batch
using a softmax cross-entropy. Given an encoder model fθ(·) parameterized by θ, the loss
for a single view is the NT-Xent shown in Equation 2.4.

As a reminder, the NT-Xent loss (for normalized temperature cross-entropy), described
in Equation 2.4, is the result of the cross-entropy between the distribution generated by
the softmax over distances and a pseudo-label of positives such that only the distance
with respect to positive samples is diminished and the distance with negative samples is
increased when minimizing the loss.

To adapt the contrastive learning framework to multi-modal datasets, we propose to
treat a multi-modal sample as multiple augmented views of the same sample. In this
case, the sensing with different sensors can be seen as a form of augmentation since the
underlying ground truth label remains the same. Moreover, one can still use random
augmentations such as color jittering but with caution since remote sensing images may
not be as augmentable as natural images. For example, applying color jittering on a
multispectral image has no guarantee to generate a plausible multispectral image with
the same label.

One consideration about computing representations for multi-modal images is that
more often than not, the multiple modalities composing a remote sensing dataset are
heterogeneous. That is, they do not have the same resolution and the same channels.
As such, they cannot be directly encoded using the same backbone model. Hence, we
propose to use an encoder per modality and train each model to project in a common
latent representation space which becomes domain and augmentation invariant.

In a setting with M modalities, the joint learning process is as follows. After encoding
each image using a modality-specific image encoder fm(·), m ∈ [1, M ] and projecting the
feature representations into the hypersphere (i.e. feature space) zi,m = fm(xi,m)

∥fm(xi,m)∥ (i.e.
normalized to unit vectors). We now consider zi = cat(zi,1, . . . , zi,M) the set of all fused
representations in the batch. For a view representation zi, we call its set of multimodal
positives PMM(i) which contains the indices in z of representations of the same sample but
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Figure 4.3: Architecture of our multi-modal pre-training and finetuning processes. Black
arrows represent the forward data flow during pre-training while dashed gray arrows
represent the forward data flow during finetuning. To ease reading, we illustrate a specific
use-case of methane source classification using the from the Meter-ML (Zhu et al., 2022)
dataset with three modalities: NAIP, Sentinel-2 and Sentinel-1 images. In the downstream
classification task, methane emitting sources are divided into six classes.

from other modalities. The pre-training loss used for multimodal datasets is the following
for a batch of N samples:

LMM-SSL =
N∑

i=1

−1
|PMM(i)|

M∑
j∈PMM(i)

log exp(⟨zi, zj⟩/τ)∑
k ̸=i exp(⟨zi, zk⟩/τ)

, (4.1)

where τ > 0 is a temperature parameter used to control the overall sharpening of the
distribution produced by the softmax operator. Due to its construction, Equation 4.1
is very similar to Equation 2.4 which defines the NT-Xent loss as used in (Chen et al.,
2020a). Our overall architecture can be seen in Figure 4.3.

After pre-training encoder models with LMM-SSL, the fm backbones can be used on their
own as a discriminative initialization after self-supervised pre-training. During the down-
stream tasks, a single feature can be used for a geographical location by fusing representa-
tions from each input modalities. We choose to generate these image-level representations
from the multiples modality-specific representations by concatenating. Though the fusing
method could be improved in future work on multi-modal representation learning.
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4.2.2 Experiments

Pre-training Experiments. In order to evaluate the performance of our proposed
framework, we perform a series of multi-modal self-supervised pre-training with the dif-
ferent combinations of modalities available in the Meter-ML (Zhu et al., 2022) dataset.
Then after pre-training, we perform a final finetuning on a subset or all modalities used
during the pre-training and evaluate the performance on the test set of the dataset.

The Meter-ML (Zhu et al., 2022) dataset used in our experiments for methane source
classification contains multiple modalities for each geographic coordinate. Each methane-
emitting present facility in the dataset accordingly has corresponding Sentinel-1, Sentinel-
2 and NAIP sensor captures. To experiment with both optical and SAR data as well as
both low and high resolution, we pick sensor views from Sentinel-1 (VH and VV) and
Sentinel-2 (RGB and NIR) at 10-m resolution as well as NAIP (RGB and NIR) at 1-m
resolution. The proposed architecture is composed of a backbone for each modality used
during pre-training. We use an AlexNet (Krizhevsky et al., 2017) for Sentinel-1 (S1) and
Sentinel-2 (S2) and a ResNet18 (He et al., 2016) model for NAIP. All experiments are
implemented using the Pytorch (Ansel et al., 2024) deep learning framework. To evaluate
the impact of artificial augmentations, we compare self-supervised pre-training with ar-
tificial augmentations and without. When artificial augmentations are used, we generate
two versions of the same image for each modality using random augmentations. Our set
of augmentations includes random horizontal and vertical flips and a random cropping
with a conservative resized crop with a scale of at least 90% of the original image. With
artificial augmentations, it results in each augmented view having a randomly augmented
positive in the same modality as well as multiple augmented positives in other available
modalities whereas without artificial augmentations, the view from a modality only has
corresponding positives in other modalities. The Negative class samples present in the
Meter-ML dataset are only used as negatives in the contrastive loss (see Equation 4.1).
Models are pre-trained for 120 epochs. When using multiple modalities during finetuning,
representations from each backbone are concatenated to produce a single feature vector
for the sample which is then fed to the classifier. For methane source classification, we
finetune models for 100 epochs. The training and validation sets are set following the
official split of the Meter-ML dataset. Results can be seen in Table 4.3.

From the table, self-supervised pre-training consistently improves the performance
compared to randomly initialized models. The multi-backbone architecture also scales
with the number of modalities even when certain modalities are removed for the down-
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Pre-training Downstream
S1 S2 NAIP S1 + S2 S1 + NAIP S2 + NAIP S1 + S2 + NAIP

None 47.37% 64.29% 62.03% 65.04% 63.16% 68.42% 65.79%

S1 51.13% - - - - - -
S2 - 70.30% - - - - -
NAIP - - 66.92% - - - -
S1 + S2 53.76% 71.80% - 71.80% - - -
S1 + NAIP 56.39% - 70.68% - 72.18% - -
S2 + NAIP - 71.43% 68.42% - - 72.18% -
S1 + S2 + NAIP 58.65% 72.56% 72.93% 72.18% 68.80% 73.31% 73.68%
S1 + S2 ⋆ 50.00% 69.55% - 65.04% - - -
S1 + NAIP ⋆ 55.26% - 70.30% - 60.90% - -
S2 + NAIP ⋆ - 72.56% 69.92% - - 72.93% -
S1 + S2 + NAIP ⋆ 52.63% 71.05% 69.92% 65.41% 65.79% 69.92% 69.17%

Table 4.3: Accuracy using different pre-training and finetuning scenarios. When pre-
training is None, it refers to randomly initialized baseline models. Pre-trainings annotated
with ⋆ denotes using no random augmentations and using only view (the original ) by
modality during pre-training. In this setting, the self-supervised pre-training cannot be
done on a single modality.

stream task. As an example, pre-training with Sentinel-1 and Sentinel-2 and then per-
forming finetuning and evaluation on Sentinel-1 alone yields a final performance of 53.76%
whereas performing only on Sentinel-1 yields a performance 51.13%. The best overall per-
formance is obtained when combining all modalities for the downstream classification task.
Each modality therefore contains information relevant to the classification task that the
methane source classifier is able to exploit. It is interesting to highlight that using fusion
only during the downstream task and with a random initialization leads to a worse perfor-
mance of 65.79% than when using only Sentinel-2 data during pre-training and finetuning
which reaches 70.30% of accuracy. This means that this modality could provide the most
important information for classification and that self-supervised pre-training allows a dis-
criminative initialization, which gives a better performance on the scene classification
downstream task.

Our experiments without artificial augmentations show interesting results. Mainly,
when pre-training with modalities which are different in nature like SAR and optical
data (S1+S2, S1+NAIP), the results are better with artificial augmentations. This phe-
nomenon suggests that the single positive from the other modality is hard to align to.
Indeed, adding artificial augmentations improves the pre-training performance by also
offering in-modality positives. For example, when pre-training on the three available
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modalities and finetuning on the same three modalities, the performance increases from
69.17% to 73.68% when adding random augmentations to the pre-training process. With
only optical pairs from different modalities (when pre-training with Sentinel-2 and NAIP
for example), the drop in performance from removing random augmentations is less severe,
dropping from 72.18% to 69.92%. Consequently, in this case, artificial augmentations have
less impact on the downstream performance. In any case, the pre-training performance
with only a single modality and random augmentations performs worse than pre-training
with multiple modalities, but remains better than random initialization for our chosen
downstream task of scene classification with finetuning.

Now that we have successfully experimented with a multi-modal pre-training method,
we generalize this scheme to the supervised setting in Section 4.3. This generalization en-
ables leveraging label information if available in the final finetuning phase which currently
only uses categorical cross-entropy as its classification objective.

4.3 Multi-Modal Supervised Contrastive Learning

4.3.1 Methodology

Following section 4.2 which introduces a self-supervised framework to pretrain multi-
modal models on multi-modal dataset, we apply this formulation to the supervised setting.
Introduced by Khosla et al. (2020), Supervised Contrastive (SupCon) learning brings the
representation learning lessons from self-supervised learning to supervised representation
learning where labels are available. With the extra supervision signal, the core principle
of SupCon learning is to extend the set of positives with samples from the same class
when computing the contrastive loss. This addition prevents a known problem with
SSL methods where negatives are actually picked from the same ground truth class and
pushing negatives far away which thus reduces the clustering of samples from the same
class. More optimal solutions for negative sampling have been explored in Chuang et al.
(2020) and Robinson et al. (2020).

Figure 4.4 depicts our supervised contrastive framework between samples from two
different classes each with two modalities. Samples from the same class are pulled closer
together whereas negative samples from a different class are pushed further away. The
hypersphere is used as a support for the learnt representations. In SupCon, Khosla et al.
(2020) propose to extend the set of positives used for contrastive learning with all samples
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Figure 4.4: Example of our proposed multi-modal supervised contrastive learning frame-
work with samples from the class Waste Water Treatment (WWT) and Landfill (LF)
optimized on the unit-circle S1.

from the same class.

We define PS(i) = {j; yj = yi, j ̸= i} as the set of all images from the same class
as given sample i. The SupCon method therefore uses this set of positives for an image
instead of randomly augmented versions from the same image. The SupCon loss is defined
similarly to the NT-Xent loss from Equation 2.4 but using PS:

LSupCon =
N∑

i=1

−1
|PS(i)|

∑
p∈PS(i)

log exp(⟨zi, zp⟩/τ)∑
k ̸=i exp(⟨zi, zk⟩/τ)

, (4.2)

In our multi-modal extension of supervised contrastive learning, we leverage this set
and extend it with all views from all modalities. Formally, we define the set of positives
for a sample i as PMM-S(i):

PMM-S(i) = PMM(i) ∪
⋃

j∈PS(i)
PMM(j). (4.3)

PMM-S(i) is therefore composed of all views of the samples belonging to the same
class. Using this positive set for each sample, we can define the multimodal supervised
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contrastive loss by once again embedding the multimodal images and concatenating them
in a single vector z as done in Section 4.2 (Equation 4.1) as follows:

LMM-S =
N∑

i=1

−1
|PMM-S(i)|

∑
j∈PMM-S(i)

log exp(⟨zi, zj⟩/τ)∑
k ̸=i exp(⟨zi, zk⟩/τ)

. (4.4)

With this definition, the standard SupCon (Khosla et al., 2020) becomes the specific
case with a single modality (M = 1) where PMM(i) = {i}. Moreover, the joint multimodal
self-supervised learning (Berg et al., 2023) presented in Section 4.2 becomes another
specific case where each image has a different ground-truth label (yi = i ⇔ PS(i) = ∅).

While LMM-S is a representation learning loss, it also requires a classification loss to
evaluate the quality of representations and perform classification inference. We therefore
choose to combine this loss with the categorical cross-entropy:

Ltrain = αLMM-S + (1 − α)LCE, (4.5)

where 0 ≤ α < 1 is the weighting coefficient to balance the importance of the two loss
terms. LCE refers to the categorical cross-entropy loss. This loss can be seen as combin-
ing a representation learning objective with a classification objective. In our experiments,
we set α = 0.5 to train the proposed framework, giving equal importance to each term.
An overview of the complete training architecture can be seen in Figure 4.5. Addition-
ally, by setting α = 0, one can ignore the multimodal SupCon term to only train using
the standard cross-entropy loss for classification, falling back to the well-known categor-
ical cross-entropy training on the representations obtained from fusing the multi-modal
representations.

4.3.2 Experiments

In order to evaluate the improvement that multi-modal supervised contrastive learning
can bring to the table, we conduct experiments on multimodal scene classification us-
ing two public datasets, including the 2020 IEEE Datafusion Contest (Yokoya et al.,
2020) (DFC2020) and the Meter-ML (Zhu et al., 2022) dataset. Following the setting of
Scheibenreif et al. (2022a), for the first experiment on DFC2020, the pre-training phase
was performed on the large-scale SEN12MS (Schmitt et al., 2019) dataset which con-
tains 180, 662 pairs of spatially-aligned Sentinel-1/Sentinel-2 observations without labels.
Then, in the downstream task, 986 and 5, 128 paired Sentinel-1/2 from DFC2020 were
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fS1(·) fS2(·)

Sentinel 1 Sentinel 2

h(·)
LMM-S

LCELtrain

Figure 4.5: An overview of multi-modal supervised contrastive training pipeline on a
Sentinel-1/Sentinel-2 pair multi-modal dataset.

used for finetuning and test, respectively. This dataset involves 8 land-use scene classes
including Forest, Shrubland, Grasland, Wetland, Cropland, Urban/Built-up, Barren and
Water. For both datasets, we use the official train/test splits. For a fair comparison to
the baseline in Scheibenreif et al. (2022a), we adopted the ResNet-50 model as encoder
and exploited the pre-trained weights provided by the authors using their multimodal SSL
pretraining approach. With the finetuning, we also used the same hyper-parameters as
the baseline. We note that the authors also leveraged the Swin Transformers as encoder
in their experiments. As it achieved lower performance than ResNet-50 in finetuning
(Scheibenreif et al., 2022a), we did not consider Swin Transformer backbone in this work.

Regarding the second dataset which is Meter-ML (Zhu et al., 2022), which contained
three image modalities including Sentinel-1/2 and NAIP observations. In this study, we
only consider pairs of Sentinel-1/2 images to perform the downstream classification task
to show the impact of SupCon learning. Nevertheless, one can easily extend this approach
to more modalities. For experimental settings, we follow the settings set in Section 4.2,
including the use of AlexNet as encoder as well as the number of epochs, i.e. set to 120
and 100, used for SSL pre-training and finetuning, respectively.

For both experiments on the two datasets, we perform the downstream finetuning
using the combined loss function in Equation 4.5 and set α = 0.5 to balance the two loss
terms. We set α = 0 to yield the baseline performance using only the cross-entropy loss.
Each experiment is conducted for 5 runs. As previously mentioned, to study the impact
of the multimodal SupCon term, we also conduct experiments on the Meter-ML dataset
to perform a sensitivity analysis to parameter α in Equation 4.5.
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The results for the downstream task on the DFC2020 dataset can be observed in
Table 4.4. We also report the performance from the paper (Scheibenreif et al., 2022a)
for a comparison, although our reproduced results were marginally higher. The table
shows that the proposed multimodal SupCon learning provided better performance than
the standard use of categorical cross-entropy. The overall accuracy was significantly in-
creased with a gain of 4.33% (72.62% compared to 68.29%) and the average accuracy
over all classes was also improved for about 1.5% (55.87% compared to 54.39%). This
confirms the effectiveness of the proposed frameworks, in particular the use of supervised
contrastive loss to better leveraging class information and multiple data modalities during
the finetuning phase.

Class CE CE SupCon+CE
(Scheibenreif et al., 2022a) (Our impl.) (Proposed)

Forest 65±8 63.49±5.90 75.54±5.01
Shrubl. 56±11 58.31±4.59 52.26±4.42
Grassl. 9±6 12.60±7.53 6.18±4.93
Wetland 15±8 14.43±11.55 20.90±7.11
Croplan 45±8 52.65±7.94 59.65±5.07
Urban 95±1 91.14±3.48 89.94±2.63
Barren 39±3 43.91±2.7 44.09±3.49
Water 99±1 98.63±0.41 98.42±1.25

Overall 67±2 68.29±1.66 72.62±1.31
Average 53±2 54.39±0.72 55.87±0.89

Table 4.4: Top 1 Accuracy Performance on the DFC2020 dataset. We compare our pro-
posed multi-modal supervised contrastive objective with categorical cross-entropy fine-
tuning used in Scheibenreif et al. (2022a) which we have reimplemented.

From Table 4.5, the classification results on the Meter-ML dataset again confirms the
superior performance of the proposed approach. We observe that for a large majority of
classes (i.e. 5 out of 6 classes), exploiting the multimodal supervised contrastive learning
significantly improves the final downstream performance. A gain of more than 3% was
finally achieved for the average accuracy (73.83% compared to 70.74%). We note that, as
done in Berg et al. (2023), the Negative class was excluded from the evaluation since it
contains samples which are not methane emitting facilities.

Finally, to enrich our experiments and demonstrate the consistency of the proposed
method to other supervised classification loss functions. We have performed a comparative
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Class CE SupCon+CE
(Our impl.) (Proposed)

CAFOs 97.44 ± 1.59 97.44 ± 0.95
Landfills 50.23 ± 3.15 59.53 ± 4.82
Mines 60.00 ± 5.24 59.00 ± 8.40
Proc Plants 57.36 ± 5.10 66.31 ± 5.71
R&Ts 77.91 ± 3.99 78.61 ± 1.97
WWTs 81.50 ± 2.00 82.10 ± 4.20
Average 70.74 ± 1.74 73.83 ± 2.00

Table 4.5: Top 1 Accuracy Performance on the Meter-ML dataset. Our proposed method
is compared with categorical cross-entropy (CE) finetuning.

Method Accuracy

WCE Loss 71.23±0.69
SupCon + WCE (ours) 74.74±0.55
Focal Loss 71.50±0.93
SupCon + Focal (ours) 75.19±0.76

Table 4.6: Accuracy performance on the Meter-ML dataset when combining our proposed
multi-modal SupCon loss with other finetuning losses. The weighted cross-entropy loss is
weighted inversely to the occurrence of a class in the training dataset.

study by combining our SupCon loss with the Weighted Cross-Entropy (WCE) loss and
the Focal loss (Lin et al., 2017). We note that these two loss functions have been proved
to be more effective than the standard CE when dealing with unbalanced classes, which is
the case of the Meter-ML dataset. Table 4.6 shows the significant improvement by using
our approach, confirming the its consistency to this multimodal classification task.

These results show the impact of leveraging the supervised signal to improve repre-
sentations when training the downstream task classifier. We can imagine using both self-
supervised and supervised multi-modal contrastive learning as part of a training pipeline
where a large subset of the data is not annotated and therefore self-supervised pre-training
can play an important role in initializing the model’s weights such that it has good initial
performance.

On the sensitivity of the α parameter. The α hyper-parameter in Equation 4.5
is used to weight between the classification loss (LCE) which impacts both the classifier
and the weights of the encoder models and the multi-modal supervised contrastive loss
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Figure 4.6: Performance on the Meter-ML dataset (Zhu et al., 2022) of our proposed
supervised multi-modal framework when varying the value of the α hyper-parameter in
the formulation of Ltrain.

LMM-S. Naturally, α = 0 implies Ltrain = LCE which corresponds to the baseline finetuning
which we compared our method to in Table 4.4 and 4.5. Conversely, if one were to choose
α = 1, then there would be no more classification loss and one could expect the resulting
classification performance to be that of a random classifier since the classifier would not
be impacted by the gradient of Ltrain. Since our results for Table 4.4 and 4.5 were achieved
with α = 0.5, we suspect that there exists an optimal value for α ∈ [0, 1[. As such, we run
an ablation study by performing multiple run under the same protocol but by varying
the value of α in the interval [0, 1[. The results of this ablation study can be seen in
Figure 4.6. With this study, we see that the optimal value for the Meter-ML dataset is
indeed α = 0.5 and that the performance decreases rapidly if α is too big.

4.4 Conclusion and Discussion

In this chapter, we covered the task multi-modal image classification which can occur in
remote sensing datasets. To this end, we propose a self-supervised framework to learn dis-
criminative representations for multi-modal datasets. Secondly, the proposed framework
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can be generalized to the setting of Supervised Contrastive learning (Khosla et al., 2020).
When labels are available, this improves upon the commonly used cross-entropy finetun-
ing used to prepare a self-supervised model to solve a downstream classification task. In
the future, one could explore the task of multi-modal classification in cases where remote
sensing images are not always co-registered (i.e. all modalities are not always available
for a sample). One could draw on the foundation model research where multi-modal lan-
guage and text models share a common latent space (Mizrahi et al., 2024; Radford et al.,
2021). This proves to be an harder problem than the one studied in this chapter but we
hope that our work is a step in the right direction for the research in multi-modal scene
classification.
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In this chapter, we consider the problem of classifying samples whose labels can be
organised in a hierarchy. A so-called hierarchical dataset can be built by grouping la-
bels which have similar semantic meaning under a common ancestor. For example, the
ImageNet (Russakovsky et al., 2015) dataset labels can be organised based on the Word-
Net (Miller, 1998) taxonomy. Hierarchical groupings can also be based on the biological
taxonomic rank as is the case for the CUB200 dataset (Wah et al., 2011) and the iNatu-
ralist 2019 dataset (Van Horn et al., 2018). In other cases, such as when dealing with the
task of semantic segmentation, the hierarchy can come naturally from the spatial inclu-
sion of one class into its superclass. Therefore, simply by varying the fine graining level,
one can build a hierarchy of labels. For example, in a semantic segmentation dataset,
the superclass Human body can have children classes for each of the corresponding body
parts.

To that end, we introduce a hyperbolic classification scheme that can then be used
for image classification and semantic segmentations tasks. On its own, this hyperbolic
classification method does not leverage the hierarchical nature of the data apart from
using hyperbolic embeddings to perform the classification. To explicitly leverage the
tree likeness of hyperbolic spaces, we then propose a hierarchically informed scheme to
position ideal prototypes which are used as parameters of our horospherical classifier. In
this initialization scheme, prototypes corresponding to labels near each other in the label

89



Horospherical Learning with Hierarchical Prototypes

hierarchy should also be positioned nearby in the ideal prototype embedding space which
is the hypersphere in the case of using the Poincaré ball model to represent hyperbolic
embeddings.

5.1 Hyperbolic Classification using Horospheres

In Subsection 2.2, we introduced the Busemann function as a measure of distance between
points embedded in hyperbolic space and points located at the infinity (i.e. ideal points).
This function was successfully leveraged by Ghadimi Atigh et al. (2021) to propose a
hyperbolic classification scheme based on ideal prototypes. In their proposed framework,
a backbone encoder model is trained to minimize the Busemann distance between an image
representation and the prototype corresponding to its class label. During inference, the
prototype whose Busemann distance function with a sample is minimal is taken as the
prediction.

We propose to build upon their work and introduce another hyperbolic classification
layer based on the Busemann function. More specifically, the level-sets of the Busemann
function are called horospheres (or horocycles in two dimensions). Given an ideal point
p, a horosphere is said to be centered at p if it is generated as the level-set of Bp.

a = −1.0

a = 0.0

a = 1.0

p

Figure 5.1: Multiple horocycles centered
at the same ideal point p in the Poincaré
disk.

In our work, we propose to update the pro-
totype’s position and add an additional scalar
parameter which parameterizes the level-set
generating this horosphere. This parameter
acts analogously to the bias term in Euclidean
hyperplanes as it acts on the radius of the horo-
sphere. This allows the horospherical classifier
to model a larger set of decision boundaries.
Therefore, a parameterized horosphere can be
defined from its prototypes p ∈ Sd−1 and its
bias term a ∈ R. We define this horosphere
level-set as:

Hp,a = {x ∈ Hc
d, −Bp(x) + a = 0}, (5.1)
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where Bp is the Busemann function (see Equation 2.17). In the Poincaré ball model, such
a level-set corresponds to an Euclidean hypersphere which is tangent to the Poincaré ball
at p and has a radius of r(a) = 1+tanh(a/2)

2 (see Supplementary A.3). Examples of different
horocycles in the Poincaré disk can be seen in Figure 5.1.

In order to prevent samples from moving too close to the boundary, one common
solution is to use Euclidean clipping before projecting in hyperbolic space (Guo et al.,
2022) to restrict representations to only a subset of the Poincaré ball. However even with
this clipping, the majority of representations end up close to the new boundary such that
only comparing samples based on their orientation can be enough (Moreira et al., 2023).
In Ghadimi Atigh et al. (2021), the authors instead use an additional regularization term
which prevents representations’ radii from growing too close to the boundary. We include
a similar regularization, not as a loss term, but directly in the logit ξp,a for an hypersphere
parameterized with p, a:

ξp,a(x) = −Bp(x) + a + ϕ(d) · log
(
1 − ∥x∥2

2

)
, (5.2)

where ϕ(d) weights the impact of this regularization depending on the dimension d of
the hyperbolic space Hc

d. Adding this regularization to the scoring function ξp,a penalizes
points from moving too close to the boundary and therefore the level set {x ∈ Hc

d, ξp,a(x) =
0} is not strictly an hypersphere tangent to the Poincaré ball at point p. Note that with
ϕ(d) = 0, we fall back to the parameterized definition from Equation 5.1. In practice
and similar to Ghadimi Atigh et al. (2021), we use a single scalar hyper-parameter λ ≥ 0
which is fixed during training to parameterize regularization such that ϕ(d) = λ × d. We
provide an analysis of the sensitivity of this parameter in Appendix A.3.

While the logit function ξp,a defined in Equation 5.2 can be used to perform binary
classification by computing P (ŷ = 1) = σ(ξp,a(x)), with σ : Rd → [0, 1] being the logistic
function, it can also be adjusted for multi-class predictions. Indeed, horospheres can
be adapted in a multi-class classification setting by having a horosphere per class and
using a softmax normalization to obtain class membership probabilities. A multi-class
horospherical layer consists of K horospheres and we define the probability of a sample
x ∈ Hc

d with respect to one of the K classes as the softmax over the resulting K logits:

P (ŷ = k | x, p, a) = exp(ξpk,ak
(x))∑K

l=1 exp(ξpl,al
(x))

, ∀k ∈ {1..K}. (5.3)

This horospherical multi-class classifier can then be trained using the negative log-
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likelihood loss over the training data x, y:

Lp,a(x, y) = 1
N

N∑
i=1

− log P (ŷ = yi | xi, p, a). (5.4)

During training the ideal prototypes position is updated using stochastic Rieman-
nian gradient descent (Bonnabel, 2013) which leverages the exponential map to project
gradients to the manifold (see Subsection 2.2) whereas Euclidean parameters from the
backbone are optimized using regular Stochastic Gradient Descent (SGD). There is a
Riemannian version of the Adam (Kingma & Ba, 2014) optimizer proposed in (Bécigneul
& Ganea, 2018) which can be used instead of the Riemannian gradient descent to keep
prototypes on the hypersphere. Even though the prototypes are allowed to move during
the training in order to minimize the training loss, it can be costly or impossible for mul-
tiple prototypes to exchange positions on the hypersphere. As such, the initial position of
ideal prototypes can largely impact the training process. Therefore, we propose in Sub-
section 5.2 an initialization scheme to improve the downstream classification performance
of the horospherical classifier.

5.2 Hierarchical Initialization

(a) Pine Warbler. (b) Prairie Warbler. (c) Sooty Albatross.

Figure 5.2: Example birds from the CUB200 (Wah et al., 2011) dataset. 5.2a and 5.2b
both are in the Parulidae biological family whereas 5.2c is in the Diomedeidae family.

In Section 5.1, a new hyperbolic classification model based on horospheres was pre-
sented. The proposed horospherical classification leverages the hyperbolic geometry through
the Busemann function but does not explicitly leverage the ability of hyperbolic spaces
to embed trees with minimal distortion. However, this property can be useful in order
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to perform classification on hierarchical datasets. That is, datasets where labels are or-
ganised in a hierarchy. As an example, the ImageNet dataset (Russakovsky et al., 2015)
labels are organised following the WordNet (Miller, 1998) hierarchy. This means that a
label can be more related semantically to one label than to another depending on the
distance between the two labels in the label hierarchy. One example of such a hierarchy
for the CUB200 dataset (Wah et al., 2011) can be seen in Figure 5.3a where the lower
level of the hierarchy (i.e. leaves) corresponds to bird species, the level above to biological
families and the first level to biological orders. The notion of distance between labels can
be defined in several ways, for example, Mettes et al. (2019) and Liu et al. (2020) use the
distance between textual word embeddings of labels. When a label hierarchy is available,
the distance between two labels can be defined as the shortest path in the tree induced
by the hierarchy between the two labels. As such, in CUB200, the two species Pine War-
bler (see Subfigure 5.2a) and Prairie Warbler (see Subfigure 5.2b) have a distance of 2
because they are member of the same biological family, Parulidae. On the other hand,
Prairie Warbler and Sooty Albatross (see Subfigure 5.2c) do not share the same biological
order so their distance is 6, the maximum in the CUB200 hierarchy. As can be seen in
Figure 5.2, in this case, biological families directly ties to visual similarity because birds
from the same family exhibit similar visual features but also are more likely to appear in
a similar environment. Therefore, we suppose that making prototypes of the same family
close to each other in latent space can lead to better performance as the decision bound-
ary between leaf labels will only focus on the intrinsic differences within that superclass.
Said differently, it will classify based on what really differentiates a Pine Warbler from a
Prairie Warbler, knowing they both are members from the Parulidae biological family.

In this subsection, we introduce a hierarchically informed scheme to initialize ideal
prototypes which are the starting point for horospherical classification. This enables
prototypes to be already hierarchically positioned upon the start of training which can
help the model reduce the gravity of its classification errors. Indeed, if semantically
related prototypes are located close to each other, then classification errors will fall in
semantically related classes instead of completely unrelated ones, which should ideally
improve the hierarchical performance of the models as well as its baseline performance.

5.2.1 Uniform ideal prototypes.

In order to fully leverage the embedding space, we initialize the layer with prototypes uni-
formly distributed around the hypersphere Sd−1 = {x ∈ Rd, ∥x∥2 = 1}. While uniformly

93



Horospherical Learning with Hierarchical Prototypes

(a) CUB200 Hierarchy. (b) CIFAR100 Hierarchy.

Figure 5.3: The CUB200 (Wah et al., 2011) and CIFAR100 (Krizhevsky & Hinton, 2009)
label hierarchies. The CUB200 hierarchy contains three levels, representing the biological
order, family and species of labels whereas the CIFAR100 hierarchy contains 100 classes
with 9 levels.

distributing around the circle can be done in a closed-form by simply dividing the circle
in K slices such that pi = [cos(2iπ/K), sin(2iπ/K)]⊤, ∀i ∈ [1, K]. However, there exists
no such solutions for higher dimensions. Computing uniform positions for a set of points
on the hypersphere can be done in different manners (Bonet et al., 2023b; Wang & Isola,
2020) as was also shown in Section 3.2. For this section, we choose to optimize a set of K

points
{
pi ∈ Sd−1; i = 1, . . . , K

}
on the sphere using the uniform loss proposed by Wang

and Isola (2020). This uniform loss is based on the pairwise Gaussian potentials between
each point. It effectively maximises the pairwise distance between each pair pi, pj:

Lunif(p) = log

 1
K(K − 1)

∑
i ̸=j

exp(−∥pi − pj∥2
2)

 . (5.5)

After optimization, this set of points can be used as ideal prototypes in the Poincaré
ball model. Whereas the Busemann classifier (Ghadimi Atigh et al., 2021) randomly
assigns prototypes to class labels, we now consider the problem of assigning a class label
to each prototype in a hierarchically informed manner to improve the performance of the
classification model.
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5.2.2 Hierarchical ideal prototypes

On one side, we have a set of ideal prototypes uniformly distributed around the hyper-
sphere Sd−1. On the other side, we have a label hierarchy represented as a tree. As such,
there is no straight forward way to compute a distance between an ideal prototype and
a label since they are embedded on different support. Garnot and Landrieu (2021) work
around a similar problem by providing a scale-free variant of their distortion loss.

Instead, in this context of incomparable spaces, one can resort to the Gromov-Wasserstein
distance (Mémoli, 2011). The GW distance is used to compute a transport plan P between
samples from two empirical distributions whose supports are embedded in incomparable
spaces (see Subsection 2.3.4 for more background).

The tree metric is taken to be the length of the path between two nodes in the hierar-
chy. Therefore, two leaves i and j with the same parent will have a distance (MT)i,j = 2.
For the sphere metric, we use the cosine distance (MS)i,j = 1 − ⟨pi, pj⟩ which is an
increasing function of the length of the arc between pi and pj and 0 ≤ (MS)i,j ≤ 2.

Given MT and MS, the distance metrics on the tree and on the sphere respectively,
one can compute the optimal transport plan between atoms from T and S:

P ⋆ = argmin
P ∈U(a,b)

∑
i,j,i′,j′

|(MT)i,i′ − (MS)j,j′|2Pi,jPi′,j′ (5.6)

where ai = bi = 1/K are uniform marginal distributions for both labels in the hierarchy
and prototypes on the sphere respectively.

Since both a and b have the same cardinality, the optimal transport plan P ⋆ is a
permutation matrix which can be use to assign prototypes to nodes in the hierarchy.
Therefore, label i will be assigned to prototype j⋆ as such:

j⋆ = argmax
j∈{1..K}

P ⋆
i,j. (5.7)

The different metrics displayed in a visual form can be seen in Figure 5.4. In this
case, we can see that the sphere metric after applying our proposed assignment strategy
exhibits a diagonal structure similar to that of the tree metric.

In order to visualize this assignment more explicitly, we display the uniform proto-
types before the assignment using a hierarchical color map in subfigure 5.5a. After the
hierarchical assignment, the same display can be used. In Figure 5.5, one can notice that
after the hierarchical positioning step, prototypes of similar colors and therefore of similar
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Tree leaves

(a) Tree metric MT as the
longest path between labels in
the hierarchy.

Uniform (Init)

(b) Sphere metric MS metric
of randomly assigned proto-
types.

Gromov-Wasserstein (Init)

(c) Sphere metric MS metric
of prototypes assigned using
our proposed method.

Figure 5.4: Comparison of the different distance matrices, axes are sorted such that leaves
closer in tree also appear closer in the axis. Hence the diagonal pattern in the tree metric
which can be seen in Subfigure 5.4a.

hierarchical similarities are close together on the sphere.

(a) Uniform prototypes. (b) Gromov-Wasserstein prototypes.

Figure 5.5: Example of the prototypes before and after our proposed assignment strategy
on the sphere S2.

Additionally, we consider the simpler case of positioning hierarchical prototypes on
the boundary of the Poincaré disk in two dimensions (i.e. the unit circle S1). Firstly,
uniformly distributing points on the circle can be done in a closed form by slicing the circle
in arcs of equal length 2π/K as explained in Section 5.2.1. The hierarchical structure can
also be embedded on the circle without having to compute an optimal transport plan, by
using the graph visualization algorithm used to display the hierarchies in Figure 5.3 called
twopi introduced by Wills (1999). The algorithm evenly divides the circle in K slices and
positions each prototype by assigning slices to nodes with an angle proportional to their
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number of successors. We rely on this method in two dimensions.

5.3 Experiments

As we have seen in Section 5.1, our proposed horospherical classifier can perform multi-
class classification on samples embedded in Hyperbolic space. In order to evaluate its
classification performance against other hyperbolic and Euclidean baselines, we run clas-
sification benchmarks on several tasks. We first perform image level classification over
hierarchical datasets. And secondly, we run benchmarks on semantic segmentation tasks
on images as well as point clouds where label hierarchies are derived from the semantic
meaning of labels.

5.3.1 Linking Visual and Hierarchical Similarities

To test this hypothesis, we perform a simple experiment. Given a perceptual image
similarity measure s(·, ·) which takes an image and returns a similarity score based on their
visual resemblance. Our experiment consists in comparing the mean similarity between
images which have the same predecessors in the hierarchy compared to mean similarities
between images which have different predecessors. If the hierarchy indeed has a relation
with the visual similitude then we expect to see higher similarities in images which have
a more common ancestor. Said differently, there should be a correlation between the
length of the longest path between two classes on the hierarchy and the average distances
between their respective images.

First, we define a visual distance metric between images based on a ResNet18 (He
et al., 2016) model pretrained on the ImageNet 1k dataset (Krizhevsky et al., 2017) and
whose last linear classification layer has been removed to produce latent representations for
each input image. Indeed, pre-trained networks show interesting properties for measuring
visual similarities between images (Zhang et al., 2018) and are in practice more robust
than hand-crafted perceptual metrics. Since the ResNet is not trained in a hierarchically-
aware fashion we consider that it can be used as a reliable image encoder. We then
measure the Euclidean distance between these latent representations of two images as a
visual distance measure. We refer to the encoder model as r18 : I → R512 where I refers
to the space of images corresponding to that of the dataset. Then, the distance can be
defined as:
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d(x, y) = ∥r18(x) − r18(y)∥. (5.8)

Now, given a leaf class i of a dataset Ω = X × Y of size N , we refer to Xi as the set of
samples with class label i such that Xi = {xk; yk = i, k ∈ [1, N ]} with xk being the k-th
sample of the dataset with ground-truth label yk.

DIntra-Class(i) = 1
|Xi|2 − |Xi|

∑
x∈Xi

∑
y∈Xi

1x ̸=yd(x, y). (5.9)

Then, we introduce the function ph(i) which returns the ancestor of leaf class i at
height h. Therefore, for a leaf class at height h then ph(i) = i. Following this definition,
we compute the mean distance with samples from other classes which have a similar
ancestor at height h that we refer to as Dh

Intra-Class:

Dh
Extra-Class(i) = 1

|Xi| × (∑ph(j)=ph(i);i ̸=j|Xj|)
∑

x∈Xi

∑
j;ph(j)=ph(i);i ̸=j

∑
y∈Ij

d(x, y). (5.10)

For each leaf class in the hierarchy, we measure multiple mean distances with increas-
ingly hierarchically-distant samples. First, we compute the mean intra-class similarity by
taking the mean of all pairwise distances between samples of the samples of the same class.
Then, we measure the mean distance between samples from a class and all samples from
the same family which we refer to Intra-Family. Next, we compute the mean distance
with all samples but from the same biological order Intra-Order. Finally, we compute the
mean distance with samples outside the biological order, which we refer to as Extra-Order.
As more hierarchically-distant samples are included, the mean distance between samples
increases as can be seen in Figure 5.6. This is a promising result to confirm the benefit
of leveraging hierarchical information in order to perform better visual classification.

5.3.2 Image Classification

In order to test the performance in image-level classification, we select image datasets
with different heights of label hierarchies. We compare our proposed methods with the
Euclidean baseline using a regular linear layer to perform the final classification. We
also perform experiments on the prototype learning method from Garnot and Landrieu
(2021) which learns Euclidean prototypes using a training loss which minimize distortion
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Figure 5.6: Evolution of the different means of distances either from samples from the same
species (Intra-Species), same family (Intra-Family), same order (Intra-Order) or different
order (Extra-Order) on the CUB200 dataset. As the level of granularity becomes higher
in the hierarchy, the mean distance between images increases. Series are coloured based
on the biological order.

between the label hierarchy and the prototypes’ positions. As an hyperbolic classification
baseline, we select the hyperbolic neural networks (Ganea et al., 2018b) which remain
one of the most popular method for classification in hyperbolic spaces. Finally, we also
compare with the Busemann learning approach introduced by Ghadimi Atigh et al. (2021)
in which the prototypes are fixed but the Busemann function is also used to measure a
distance between prototypes and hyperbolic representations.

We first select the CIFAR10 and CIFAR100 (Krizhevsky & Hinton, 2009) datasets
which contains 10 and 100 classes of common visual objects, respectively. For the CI-
FAR10 dataset, we divide the labels in two simple super-classes, vehicle and animal,
giving a hierarchy of depth 2 (see Figure A.3). For the CIFAR100, we use an available
hierarchy which has 9 levels in its deepest branch (see Figure 5.3b). Branches do not all
have the same length but for ease of use we insert inert nodes where needed to extend
branches which are too short to the desired length of the longest branch (i.e. the height
of the tree).

We also choose to experiment on the CUB-200 (Wah et al., 2011) which contains 200
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bird species. It is composed of 5994 training images and a test set of 5794 images. Each
species belongs to a single family which in turn belongs to an order. This gives us a
hierarchy of height 3 with 252 nodes and 200 leaves, which can be seen in Figure 5.3a.

As the backbone, we use a ResNet32 (He et al., 2016). Models are trained for 1110
epochs for CIFAR datasets and 2110 for the CUB200 dataset, as done in (Ghadimi Atigh
et al., 2021). The Riemannian variant (Bécigneul & Ganea, 2018) of the Adam opti-
mizer (Kingma & Ba, 2014) implemented in the Geoopt toolbox (Kochurov et al., 2020)
is used for optimizing the parameters for the Horospherical method. For other meth-
ods without trainable parameters on manifolds, we use the Adam optimizer (Kingma &
Ba, 2014). The curvature is set to c = 1.0 for all hyperbolic methods. The Gromov-
Wasserstein transport plan for the hierarchical positioning is computed using the Python
Optimal Transport toolbox (Flamary et al., 2021). All experiments are done with 3 runs.

During training on the CUB200 dataset and in 3 dimensions, we save the position of the
prototypes on the sphere. This allows us to display the trajectories of prototypes during
training in Figure 5.7. In the figure, we can see that the prototypes initialized randomly
move all around the sphere while hierarchically positioned prototypes are already clustered
with prototypes of similar color and therefore of similar parent class. Even though the
method only affects initialization and applies no training regularization with respect to
the hierarchy, it seems that the clustering remains compliant with the hierarchy during
training. This is in line with the hypothesis that the biological hierarchy of the CUB200
dataset can be of use to solve visual classification tasks.

The results can be seen in Table 5.1. We can see that the performance is improved
with hierarchically positioned prototypes and horospherical classifier, especially when
the embedding dimension is small such as with d ≤ 4. On its own, the performance
is improved for the Busemann method when initialized with hierarchically-positioned
prototypes compared to using randomly assigned ideal prototypes distributed uniformly
around the hypersphere.

Dataset CIFAR10 (Krizhevsky & Hinton, 2009) CIFAR100 (Krizhevsky & Hinton, 2009) CUB200 (Wah et al., 2011)
Dimension 2 3 4 50 2 3 4 50 2 3 4 50

Euclidean 89.8±0.2 90.6±0.1 90.8±0.2 91.0±0.1 45.9±0.5 53.3±0.8 56.2±0.2 62.5±0.3 24.3±1.3 46.8±0.7 50.5±1.5 51.8±0.8
Hyperbolic Neural Networks (Ganea et al., 2018b) 86.7±5.4 90.2±0.3 90.4±0.2 89.3±0.6 38.7±0.7 43.9±3.8 44.5±0.2 55.9±0.5 24.4±6.0 22.3±12.0 16.9±1.5 33.6±2.1
Metric Guided Prototypes (Garnot & Landrieu, 2021) 89.8±0.3 90.4±0.2 90.6±0.3 91.0±0.2 54.2ś0.8 57.9±0.6 58.9±0.4 62.4±0.4 31.0±2.8 48.8±1.4 53.2±1.9 57.3±0.7
Busemann - Uniform (Ghadimi Atigh et al., 2021) 89.7±0.3 90.6±0.2 90.7±0.2 88.6±0.1 49.7±0.7 48.7±2.3 50.2±1.5 63.3±0.6 27.6±7.4 40.0±2.0 45.0±1.7 49.5±3.7
Busemann - Smart (Ours) 89.8±0.1 90.4±0.5 90.7±0.1 88.6±0.1 55.7±0.5 54.8±0.4 55.4±0.3 63.3±0.3 53.3±1.6 54.3±0.4 58.0±1.1 50.4±0.6
Horospherical - Smart (Ours) 90.1±0.3 90.7±0.2 90.8±0.1 90.8±0.2 53.7±0.8 58.7±0.3 60.0±0.1 60.9±0.1 38.7±4.3 56.4±1.6 56.3±0.8 56.6±0.6

Table 5.1: Results on image classification. Best results are displayed in bold while the
second best are underlined.

In order to evaluate the classification performance, we measure the Average Hierarchi-
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(a) Prototypes trajectories when initialized
randomly.

(b) Prototypes trajectories with
hierarchically-informed initialization.

Figure 5.7: Comparison of the trajectories between random (a) and hierarchically-
informed (b) prototype positioning.

cal Cost (AHC) (Kosmopoulos et al., 2015) of the different methods on the datasets. The
AHC is a measure of performance used to quantify the hierarchical costs of errors. For a
hierarchy of labels with C leaf labels, we build a symmetric distance matrix D ∈ RC×C ,
where Di,j corresponds to the shortest path in the hierarchy between labels i and j. Given
predictions zi ∈ {1, . . . , C} from a model of N test samples and ground yi ∈ {1, . . . , C}
from the dataset with i ∈ {1, . . . , N}, The Average Hierarchical Cost is defined as:

AHC(z, y) = 1
N

N∑
i=1

Dyi,zi
. (5.11)

Note that unlike accuracy, the lowest the AHC is, the better the hierarchical classifi-
cation performance. An AHC of 0 corresponds to an actual Top 1 accuracy of 100%. The
Average Hierarchical Cost of baseline methods and our proposed horospherical classifier
with hierarchical initialization can be seen in Table 5.2. In the results, we notice that the
hierarchically-initialized horospherical classifier has a lower AHC than other methods but
is on par with the Busemann classifier (Ghadimi Atigh et al., 2021) in lower dimensions
(d = 4) while also being on par with metric guided prototypes (Garnot & Landrieu, 2021)
in higher dimensions (d = 50). Interestingly, the AHC increases for all methods when
increasing the embeddings’ dimensions.
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Method AHC↓
d = 4 d = 50

Euclidean 2.12 2.18
Metric-Guided (Garnot & Landrieu, 2021) 1.72 1.80
Busemann (Ghadimi Atigh et al., 2021) 1.63 2.07
Horospherical (Ours) 1.63 1.80

Table 5.2: Average Hierarchical Cost of different methods on the CUB200 dataset.

5.3.3 Semantic Segmentation

Since our horospherical classifier can be used in place of a regular Euclidean linear layer,
we choose to measure its performance for dense tasks such as image semantic segmen-
tation and point cloud semantic segmentation. In the context of such dense tasks, label
hierarchies can be derived from either the semantics or by grouping together labels which
are finer annotations of a bigger object. For example, in an image segmentation task, the
individual body parts could be the leaf nodes whose parent is the super class body.

Similarly to image classification, we compare our method with the baseline Euclidean
classification. As an hyperbolic baseline, we choose to evaluate the performance of the
Hyperbolic Image Segmentation from Atigh et al. (2022).

For image segmentation, we consider the Cityscapes dataset (Cordts et al., 2016)
which contains 19 classes divided in 7 super-classes (flat, construction, object, nature,
sky, human, and vehicle) as can be on the hierarchy presented in Figure A.5. We use a
DeepLab-v3+ (Chen et al., 2018) backbone trained with the official split for 240 epochs.
We set λ = 0.5. For all hyperbolic methods, c is set to 1.0. Experiments are done with 3
runs.

For point cloud segmentation, we perform experiments on the NuScenes (Caesar et al.,
2020) dataset which contains 40k frames, sampled from 1000 driving sequences in Boston
and Singapore, with a rotating LiDAR. Points are classified into 16 semantic classes and
1 ignore class. We use the official train split for training, and report the results obtained
on the publicly available validation set. For the class hierarchy we leverage the NuScenes
class description and split into 5 branches (movable object, vehicle, pedestrian, flat and
static). We additionally split the vehicle branch into 4-wheeled and 2-wheeled. This leads
to a hierarchy with 3 layers which can be seen in Figure A.4. As a point cloud processing
backbone, we use the commonly used sparse-voxel Minkowski U-Net (Choy et al., 2019),
with a 10 cm voxel size. We set λ = 0.1.
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Dataset NuScenes (Caesar et al., 2020) Cityscapes (Cordts et al., 2016)
Dimension d = 2 d = 3 d = 128 d = 2 d = 3 d = 128

Euclidean 54.0±2.4 67.4±0.3 70.5±0.5 35.9±0.0 60.9±4.6 78.8±0.4
HIS (Ghadimi Atigh et al., 2021) 40.2±5.4 58.0±2.7 69.5±0.2 41.3±4.8 45.1±7.7 77.9±0.2
Horospherical - Smart (Ours) 68.4±0.1 68.7±0.0 69.2±0.3 73.5±0.4 76.1±0.1 78.2±0.4

Table 5.3: Results on semantic segmentation (%mIoU). Best results are displayed in bold
while the second best are underlined.

Semantic segmentation results can be seen in Table 5.3. Similarly to the results
in image classification, our proposed horospherical model with hierarchical initialization
performs well, especially in lower dimensions. Finally, as seen previously in Atigh et al.
(2022), when applied to higher dimensions, the gap between Euclidean and hyperbolic
representations shrinks and Euclidean classification exhibits better performance. Nev-
ertheless, these results are promising for the future of hyperbolic classification in dense
segmentation tasks.

5.4 Conclusion and Discussion

In this work, we contribute to the task of classification over hierarchical dataset. Our
solution is built upon the ability of hyperbolic spaces to embed tree-like structure with
minimal distortion. The proposed hyperbolic classifier can be used in place of Euclidean
classifiers in order to solve tasks such as image classification and semantic segmentation.

A future research direction is investigating improvements to our framework by adding
additional hierarchical regularization during the model training similar in vain to the
distortion measure proposed by Garnot and Landrieu (2021). Indeed, in its current state,
our method only leverages the hierarchical prior in its initialization phase and has no
hierarchical knowledge during its training as the hyperbolic classification is only performed
over leaf nodes.
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CONCLUSION
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6.1 Overview of Contributions

In this thesis, we considered the process of representation learning for images. To this
end, we have explored both computer vision and remote sensing applications which each
require bespoke methods. Moreover, our work also carefully considers the specificities of
each dataset. As such, our proposed methods are often tailored to specific properties that
an image dataset can possess. This contributions are aligned with our initial objectives
of looking at self-supervised learning to reduce the need for large amounts of unlabelled
data as well as to propose methods more considerate about the possible hierarchical or
multi-modal nature of images in a dataset.

In Chapter 3, we have explored the use of Optimal Transport for self-supervised rep-
resentation learning. This methodological work has pushed us to introduce a new formu-
lation of the self-supervised joint-embedding representation learning objective using OT
plans between features or samples. We have also researched in Section 3.2, the ability of
the spherical sliced Wasserstein to enforce hyperspherical uniformity in a self-supervised
training objective with a lower computational complexity. Notably, the existence of a
closed-form when computing the Spherical Sliced Wasserstein (Bonet et al., 2023b) has
been the basis of our work. Next up in Section 3.3, we have looked into the use of
OT in dense self-supervised learning in order to improve the downstream performance of
self-supervised models in dense tasks such as object detection or semantic segmentation.

Next, in Chapter 4, we have focused on the more applied problem of learning efficient
representations for remote sensing multi-modal datasets which contain co-registered im-
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ages. This leads us to first evaluate the state of self-supervised representation learning
in remote sensing. Next, we have analyzed the setting of joint-contrastive learning for
multi-modal data by considering each modality as an augmented view in the traditional
contrastive learning setting in Section 4.2. With our promising results in multi-modal
self-supervised representation learning, we have generalized this multi-modal contrastive
objective to the supervised setting by proposing a supervised learning framework largely
inspired by the Supervised Contrastive (SupCon) method (Khosla et al., 2020).

Finally in Chapter 5, we have studied the problem of hierarchical classification and
explored how hyperbolic spaces can be used in such cases to improve over Euclidean
baselines due to their natural ability to embed trees with minimal distortion. This work
leads us to introduce a horospherical classifier based on horospheres which are level-sets
of the Busemann function. Compared to the Busemann classifier introduced by Ghadimi
Atigh et al. (2021) which has been a source of inspiration for our work, we have introduced
a hierarchically-informed manner to initialize these prototypes on the hypersphere. This
initialization scheme improves the hierarchical classification performance compared to
randomly distributing prototypes around the hypersphere.

While at the beginning of the thesis, the number of newly published methods for self-
supervised learning was frankly a bit overwhelming, it seems that the computer vision
community is broadly converging to the same performant methods (Oquab et al., 2023;
Zbontar et al., 2021) and scaling those to propose self-supervised models whose weights
are openly available. In this context and with only working with relatively small models,
our contributions may not seem too aligned with this trend. However, this ever scaling
movement is not accessible to lesser equipped computer labs. Though we are not to be
pitied, thanks to the compute grants provided by IDRIS on the Jean-Zay supercomputer.
As such, we choose to work on proposing methods which could yield improvements on
smaller models. In our experiments, there is often a trade-off between running many
compute heavy experiments in order to tune hyper-parameters and gaining little insight
into the response of the methods with respect to different parameters. As such, we try to
launch experiment runs to gain a better understanding of our methods but still remaining
aware of the potential computational, energetic and environmental costs.

As hinted by the sudden popularity of self-supervised methods, the well-known Ima-
geNet initialization is not the preferred method for initialising model’s weights. Instead,
reaching for open models pre-trained in a self-supervised fashion is now becoming the
most popular initialization as those model oftentimes have an easier time generalizing to
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different tasks than what they were initially trained on.

6.2 Perspectives

Our work presented in this thesis opens up a series of perspective future works which
we describe in this section. Finally, we also try to position our work within the more
global and recent trends in representation learning for images, computer vision and remote
sensing at large.

Optimal Transport for Self-Supervised Learning. While we only reached mixed
results in our research in integrating Optimal Transport and Self-Supervised Learning
during chapter 3, OT remains a promising tool in representation learning because many
parts of the problem can be coined as distances between distributions where one can
conveniently reach for Optimal Transport and its variants. We note that other successful
approaches of OT in self-supervised representation learning often leverage the entropic
OT problem via the Sinkhorn-Knopp algorithm as demonstrated in Caron et al. (2020)
or Oquab et al. (2023) in part due to its numerical scaling abilities compared to other
variants.

Multi-Modal Learning. The setting we studied in Chapter 4 concerns the classifi-
cation of multi-modal datasets whose samples are co-registered images which have been
captured by different sensors. A particularly challenging problem to tackle would be to
consider the setting where not all samples have captures in all modalities, resulting in
a dataset harder to align across modalities. In this case, the samples which contain all
modalities could be referred to as anchors. The goal would be to leverage such anchors in
order to reach better performance than when performing the training on either modalities.

Horospherical Learning. Hyperbolic spaces have already shown that they can pro-
vide interesting benefits compared to Euclidean spaces in relevant tasks. Following the
promising results from our horospherical classifier, we would like to bring similar improve-
ments to hierarchical classification to self-supervised learning. While hyperbolic spaces
have already been used successfully in SSL (Ge et al., 2023), we believe that hyperbolic
representations can still bring further improvements to the world of self-supervised rep-
resentation learning. Moreover, our contribution to the task of hierarchical classification
can be still be improved and leverage in other tasks where hierarchy plays a role such
as few- or zero-shot learning. In this case, the association of having well-defined ideal
prototypes for each class and a hierarchical positioning for them could be an asset when
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unseen classes are introduced. We also note that our positioning scheme is currently
only used during the layer initialization. As such, there is a possible improvement by
regularizing the movement of prototypes during training according to the hierarchy in a
manner inspired by the scale-free distortion loss from Garnot and Landrieu (2021). In this
case, the cost of computing Gromov-Wasserstein remains marginal since it would only be
a function of the number of labels in the dataset and not dependent on the number of
samples in the dataset. Thus, the added computation time would be constant during the
training and scale conveniently with a dataset’s size.

On a more global level, it seems that leveraging existing large self-supervised models
is becoming more popular. Indeed, a rising trend in representation learning is to release
so-called foundation models which are trained on very large amounts of data. This scaling
enables these models to perform well in a variety of downstream tasks. Such models have
already been proposed in the remote sensing community (Gao et al., 2022; Jakubik et al.,
2023). The multi-modal alignment of the latent space between different modalities make
these models able to perform well with multiple modalities such as text and images (Rad-
ford et al., 2021) or multiple visual modalities (Mizrahi et al., 2024). As such, training
self-supervised models from scratch can be less beneficial than being able to embed one’s
data in the latent space of an existing foundation model. Nevertheless, we hope that our
works can stimulate further research in using OT for SSL, multi-modal representation
learning or hyperbolic representation learning for hierarchical classification. Indeed, tasks
on datasets with features such as a hierarchical organisation of labels or multi-modal
nature still need to be fulfilled.
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A.2 Appendix of Chapter 4

Cohen’s κ score. The κ score (Cohen, 1960) measures the agreement between two dis-
tributions of categorical items. It is often considered more robust than accuracy because
it takes into account the probability of making the right prediction randomly. It is defined
as such:

κ = po − pe

1 − pe

, (A.1)

where po is probability of agreement between the two distributions, that is among
N predictions over C classes yi ∈ {1, . . . , C}, zi ∈ {1, . . . , C}, ∀i ∈ {1, . . . , N}, po =
1
N

∑N
i=1 1{yi=zi}. pe, on the other hand, is defined as pe = 1

N2
∑N

i=1(
∑N

j=1 1{yj=i})×(∑N
k=1 1{zk=i}).

As for the accuracy, a higher κ score means a better performance.

A.3 Appendix of Chapter 5

Impact of ϕ(d) regularization. In order to evaluate the impact of the regularization
introduced in Equation 6 we perform an experimental study of varying the value of the
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ϕ(d) parameter. Since we use a constant regularization defined as ϕ(d) = λ × d, we vary
the value of the λ parameter in the range [0, 2].
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Figure A.1: Evolution of the accuracy when moving the λ regularisation parameter. We
observe that varying the value of the parameter has little impact on the resulting perfor-
mance.

Impact of the bias a. The bias a in Equation 6 acts on the radius of each horosphere.
We experiment with disabling the bias parameter in order to evaluate its impact on the
final performance of the model. As can be seen in Table A.1, the bias provides in 2
dimensions an increase in performance but seems to be of less importance for higher
dimensions.

Radius of a Horosphere. Given a horosphere parameterized by an ideal prototype
p ∈ Sd−1 and a bias a ∈ R. We can compute the radius of the said horosphere. Remember
that horospheres in the Poincaré ball model are hyperspheres tangent to the boundary
of the ball. To compute the radius dependent on a, we will find the two points of the
horosphere which are located on the Poincaré ball radius, one of this point is p, and we
refer to the other one as x. By taking p as our first base vector, x has a single non-null
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Table A.1: Performance when enabling or disabling biases during training of horospherical
classifiers on the CUB dataset.

Method Bias Dimensions
2 3 4 50

Horospherical - Smart 34.4±6.2 56.4±0.8 56.0±0.4 57.5±0.2
Horospherical - Smart ✓ 38.7±4.3 56.4±1.6 56.3±0.8 56.6±0.6

dimension x0.

px

Figure A.2: The position of x along the vector p is x0 such that x0 = ⟨x, p⟩.

−Bp(x) + a = 0 (A.2)

log
(

∥p − x∥2

1 − ∥x∥2

)
− a = 0 (A.3)

∥p − x∥2 = 1 − ∥x∥2

exp(−a)
(A.4)

(1 − x0)2 = 1 − x2
0

exp(−a)
(A.5)

1 − 2x0 + x2
0 = 1 − x2

0
exp(−a)

(A.6)

1 − 2x0 + x2
0 = (1 − x2

0)exp(a) (A.7)

1 − exp(a) − 2x0 + (1 + exp(a))x2
0 = 0. (A.8)

We find the roots for this polynomial using the quadratic formula:
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x0 =
2 ±

√
4 exp(2a)

2(1 + exp(a))
(A.9)

=
2 ± 2

√
exp(2a)

2(1 + exp(a))
(A.10)

= 2(1 ± exp(a))
2(1 + exp(a))

(A.11)

= 1 ± exp(a)
1 + exp(a)

(A.12)

=

1. if x = p.

− tanh(a/2) otherwise.
(A.13)

Since we are interested in the solution other than the trivial x = p, the radius of a
horosphere with a bias term a is:

r(a) = 1 + tanh(a/2)
2

. (A.14)

Note that with a bias equal to 0, the diameter of the corresponding horosphere is
equal to 1 which is consistent with the fact that the Busemann function is equal to 0 at
the origin.

Label Hierarchies. Here, we include the hierarchies used for positioning prototypes
in our experiments on different datasets. Other hierarchies can be seen in Figure 5.3a and
Figure 5.3b.
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Contents
B.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

B.2 Aperçu des contributions . . . . . . . . . . . . . . . . . . . . . . 122

B.1 Motivations

Tandis que la vision apparaît comme un processus naturel pour les humains, les ordina-
teurs n’ont pas de notion inhérente pour la compréhension d’images. Dans les ordinateurs,
les images sont généralement représentées comme des matrices de pixels avec des dimen-
sions supplémentaires si plusieurs canaux sont présents. Cette représentation peut être
utile pour certaines analyses d’images but est largement motivée par la nature des cap-
teurs d’images qui sont positionnés en forme de grille. C’est pourquoi les programmes
informatiques n’ont pas de façon direct de raisonner à propos de la nature visuel des
objets et éléments présent dans une image. Par conséquent, la communauté de recherche
en vision par ordinateur a développée des techniques pour aider les ordinateurs à réaliser
de meilleurs analyses et classification d’images en apprenant aux ordinateurs à apprendre
de meilleurs représentations que la grille de pixels.

L’importance d’apprendre de meilleurs représentations en vision par ordinateur ne
peut pas être sous-estimée. Les représentations traditionnelles conçues manuellement, qui
était il fut un temps la pierre angulaire de la vision artificielle, ont largement été surpas-
sées par les représentations apprises qui offre une plus grande flexibilité, adaptabilité et
performance. La montée en popularité des techniques d’apprentissage profond a encore
plus solidifié l’importance des représentations apprises, permettant aux modèles d’ap-
prendre des paternes complexes et des hiérarchies de représentations à partir de gros jeux
de données annotés.

De nos jours, les méthodes d’apprentissage profond sont devenus omniprésentes en
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vision par ordinateur. Des réseaux profonds sont nourris avec plein d’exemples annotés afin
de résoudre des tâches de compréhension d’images, atteignant parfois des performances
comparables ou supérieures à celles des humains. Cependant, l’annotation de large volume
de données reste une tâche complexe et méticuleuse. En fonction du type d’annotation, des
experts peuvent être requis pour annoter les données pour la tâche visuel qu’ils veulent
résoudre. Comme exemple, le jeu de données ImageNet (Russakovsky et al., 2015)
a requis un effort considérable à annoter complètement ses plus de 14 millions d’images.
Entraîner des modèles d’apprentissage profond sur de tels jeux de données est un processus
couteux en ressources et en calcul mais les modèles résultants sont souvent non seulement
capable d’être performant sur le jeu de données de choix mais ils servent également de
bonne initialisation pour l’entrainement de modèles sur des jeux de données ayant des
propriétés visuelles similaires. En effet, dans le cadre de sa tâche d’apprentissage, le modèle
est capable d’extraire des représentations qui sont efficace pour décrire le contenu visuel
d’une image, et en particulier dans les premières couches du modèle. De tel façon que ces
poids peuvent être utilisés tels quel avec de bon résultats pour des tâches initialement
sans rapport tel que la détection d’anomalies dans les images (Defard et al., 2021) ou
pour mesurer une distance de perception entre images (Zhang et al., 2018).

Malheureusement, de tels jeux de données et poids pré entrainés ne sont pas toujours
disponibles quand le jeu de données n’est pas composé d’images naturelles en couleur RGB
ou que l’architecture du modèle est peu commune. Aussi, ces jeux de données peuvent
contenir des biais qui les rendent non adéquat à l’usage hors du monde académique en
fonction de comment ils ont été créés. Par exemple, dans les 1000 classes qui compose le jeu
de données ImageNet, plus de 100 classes sont des races de chiens, ce qui pose la question
de si les modèles pré entrainé sur celui-ci peuvent être utilisés tels quel sans adaptation
pour d’autre tâches. Par conséquent, des méthodes d’apprentissage de représentations non
basées sur l’apprentissage supervisé ont commencés à émerger pour remplacer la soit di-
sant initialisation ImageNet. Un ensemble de méthodes de plus en plus populaire connues
sous le nom de méthodes auto-supervisées a commencé à gagner de l’ampleur au sein de la
communauté de recherche en vision par ordinateur. Elles sont basées sur l’idée qu’au lieu
d’utiliser la classification comme tâche pour générer des représentations utiles, des tâches
prétextes peuvent être conçues uniquement à partir d’un jeu de données non annoté. Par
conséquent, un modèle peut être entrainé à résoudre de tel tâches prétextes sans dépendre
d’une supervision extérieure pour apprendre des représentations sensées qui pourra en-
suite être utilisé dans une série de tâches en aval avec plus de succès que l’initialisation par
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poids supervisés. La rapide croissance en popularité de ces méthodes peut être visualisé
sur la Figure B.1. Cette tendance pour l’auto supervision a commencé à accélérer en pa-
rallèle de la montée de l’apprentissage profond en vision par ordinateur avec notamment
les ouvrages de références tels que ceux de Gidaris et al. (2018), Noroozi et Favaro
(2016), Wu et al. (2018) et Zhang et al. (2016). Plus récemment, une branche popu-
laire de l’apprentissage auto supervisé est d’utiliser des méthodes dites à représentations
jointes ou un modèle est entraîné à produire des représentations similaires pour des vues
augmentées artificiellement d’une image de référence. Ces méthodes inclut également une
technique pour prévenir de l’effondrement des représentations dans lequel un modèle en-
traîné produit uniquement une représentation constante indépendante de l’image d’entrée
mais qui a un alignement parfait entre les vues du même échantillon. Parmi ces méthodes
à représentations jointes, nous pouvons distinguer les méthodes dites contrastives ou pour
chaque échantillon, un ensemble d’échantillons négatifs est repoussés dans l’espace latent.
Les méthodes non-contrastives, d’un autre côté, sont basées sur d’autres techniques pour
prévenir cet effondrement tel que l’utilisation de l’opérateur coupe gradient sur une des
branches (Chen & He, 2021 ; Grill et al., 2020) où sur la maximisation d’informa-
tion (Bardes et al., 2022 ; Ermolov et al., 2021 ; Zbontar et al., 2021). Finalement,
avec la popularité croissance des transformeurs pour la vision (Dosovitskiy et al., 2020),
les auto-encodeurs masquées (He et al., 2021) offrent une direction de recherche promet-
teuse grâce à la simplicité de l’objectif de reconstruction.

En outre, dans des domaines spécifiques tel que celui de la télédétection, les jeux de
données possèdent souvent des spécificités comparés aux jeux de données d’images na-
turelles. Les méthodes de d’apprentissage de représentations devrait pouvoir utiliser ces
particularités afin de produire un processus d’entraînement plus efficace en données anno-
tés. Par exemple, dans des taches denses telles que la segmentation sémantique, les objets
et régions sont souvent petit en échelle comparé à l’image entière. Il y a également une
large variété de résolutions spatiales en fonction des capteurs choisis. Cela peut résulter
en des images de télédétection étant très larges et donc couteuse en calcul à analyser pour
des méthodes sur étagère sans être pré-traiter dans un premier temps. La régularité à
laquelle les satellites observent la terre est un autre facteur qui doit être pris en compte
en commençant un projet d’observation de la terre. Il y a souvent un équilibre à trou-
ver entre avoir des images à haute résolution spatiale mais avec une faible régularité par
rapport à avoir des images à faible résolution spatiale mais prises avec une haute régula-
rité. Certaines missions capturent uniquement les bandes RGB et proche de l’infrarouge
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Figure B.1 : Nombre de publications mentionnant le terme "Self-Supervised Learning"
publié chaque année depuis 2000 (Source : Google Scholar, le 11/06/2024). Les années
récentes ont vu une augmentation dans le nombre de publications liées à l’apprentissage
auto supervisé. Il faut noter que l’année 2024 n’est pas encore complétée et a donc été
extrapolée avec les données disponibles.

tandis que d’autres capturent de larges bandes résultant dans des images hyperspectrales
avec des centaines de canaux. C’est pourquoi les utilisateurs de données de télédétection
sont souvent motiver de générer des jeux de données multimodaux afin d’accumuler les
bénéfices de plusieurs fournisseurs d’images. Des exemples de plusieurs jeux de données
de télédétection peuvent être vus sur la Figure B.2.

Dans un jeu de données multimodale, un échantillon est composé de plusieurs cap-
tures de différents capteurs. Ces capteurs peuvent varier largement et offrir des jeux de
données complètement hétérogène qui requiert des méthodes spécifiques car les méthodes
de vision par ordinateur ne sont pas applicables directement. Dans les jeux de données
multimodaux, les échantillons peuvent être co-registré. C’est à dire, la capture de diffé-
rents capteurs a été alignée en utilisant les coordonnées géographiques disponibles avec
chaque échantillon. En effet, les images issues de la télédétection ont des caractéristiques
différentes des images naturelles.

Un autre caractère que les jeux de données peuvent posséder est celui d’être hiérar-
chique. Un jeu de données hiérarchique est composé de labels qui peuvent être organisés
en hiérarchie. Les taxonomies des jeux de données peuvent être exploitées pour produire
des représentations plus informées et pour aider dans le processus d’entraînement. Dans
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(a) Le jeu de détection de véhicules VE-
DAI (Razakarivony & Jurie, 2016).

(b) Le jeu de données de segmentation sé-
mantique Vaihingen (Rottensteiner et
al., 2012).

(c) Le jeu de données de segmentation de
séries temporelles d’images satellites Euro-
Crops (Schneider et al., 2021) with hie-
rarchical labels.

(d) Le jeu de données multi-modal de clas-
sification de scènes Meter-ML (Zhu et al.,
2022).

Figure B.2 : Examples of remote sensing datasets created for diverse tasks. Images are
taken from the respective papers/dataset.

les taches tels que la segmentation sémantique, l’organisation hiérarchique des labels vient
naturellement. En télédétection, les labels peuvent souvent être groupés en différentes su-
per classes sémantiques qui peut amener à la création d’une hiérarchie utile. La similarité
dans de telles espaces hiérarchique pour deux échantillons devrait idéalement produire
une plus grande similarité entre caractéristiques visuelles pour que la hiérarchie puisse
améliorer la performance dans des taches de vision par ordinateur. La classification sur
des jeux de données hiérarchiques reste un domaine sous exploré dans la littérature de
vision par ordinateur mais elle a un grand potentiel. On peut imaginer que même si les
erreurs de classification ne peuvent pas être complètement évitées, il est moins grave pour
un modèle de classification de prédire une classe qui reste proche hiérarchiquement à la
place de la classe attendue au lieu d’une classe qui est très distante hiérarchiquement
et qui n’a donc aucune similarité sémantique avec la classe attendue. Afin d’évaluer de
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tel systèmes, des métriques hiérarchiques doivent être utilisées à la place des mesures
de performance classique tel que la précision. Une mesure de performance hiérarchique
devrait être capable d’évaluer si des prédictions faites par un modèle sont proche dans
la hiérarchie de la vérité terrain au lieu de juste mesurer si la bonne classe a été prédite
où non. La recherche en classification hiérarchique est aussi lié à la résolution de la tache
dite de few shot learning car l’introduction de nouvelles classes peut être préparées en
utilisant la relation hiérarchique entre les nouvelles classes et les classes existantes. La
nature hiérarchique des jeux de données est aussi une bonne motivation d’explorer des
espaces de projection différent pour les représentations d’images.

Ces particularités poussent la communauté de la télédétection a développer des mé-
thodes pour mettre à profit ou manipuler les spécificités des jeux de données de télédé-
tection. Ces contributions peuvent varier en taille. Elles peuvent parfois requérirent des
changements architecturaux comparés aux méthodes plus générales de vision par ordi-
nateur ou alors de concevoir des objectifs d’entrainement sur mesure qui embrassent la
nature des données de la tache.

Une zone d’amélioration possible pour certaines taches est de questionner l’espace de
plongement par défaut des représentations latentes qui est l’espace Euclidien. En effet,
les méthodes d’apprentissage profond n’opèrent que sur des représentations dans l’espace
Euclidien en partie grâce à sa distance bien définie et sa représentation numérique natu-
rel. Récemment, ce statu quo a été remis en question avec l’introduction d’alternatives
aux espaces Euclidiens pour l’apprentissage profond de représentations tels que les es-
paces hypersphériques ou hyperboliques. Ces espaces de projection alternatifs sont une
direction de recherche prometteuse pour améliorer la performance des modèles dans des
tâches spécifiques où ils sont naturellement adaptés de par leur structure inhérente. Par
exemple, puisque les espaces hyperboliques sont connues pour leur capacité à projeter des
structures d’arbres avec une distorsion minimal (Sarkar, 2011), ils deviennent une al-
ternative séduisante aux espaces Euclidiens pour résoudre des problèmes de classification
hiérarchique.

Finalement, en apprentissage de représentations, plusieurs travaux ont proposés avec
succès de considérer les échantillons comme faisant partie d’une distribution (Caron
et al., 2020 ; Robinson et al., 2020 ; Zbontar et al., 2021). Ce point de vue basé sur
les distributions considère que l’encodeur transforme les échantillons du jeu de données
d’une distribution vers une autre distribution qui doit idéalement montrer des propriétés
discriminatoires par rapport à l’objectif final. Par exemple, en apprentissage contrastif,
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nous pouvons considérer que le jeu d’échantillons positifs sont tirés dans le voisinage
d’un échantillon parmi la distribution inconnue du jeu de données. Tandis que les échan-
tillons négatifs sont eux tirés parmi l’ensemble de la distribution et représentent donc
par définition le jeu de données dans sa globalité. C’est pourquoi nous pouvons considé-
rer l’utilisation d’outils pour mesurer des distances entre distributions empiriques pour
concevoir de nouveaux objectifs d’entraînement contrastifs. Le transport optimal est un
outil populaire pour mesurer des distances entre distributions. Sa formulation et ses nom-
breuses variantes font du transport optimal une solution versatile que les pratiquants du
machine learning utilisent de plus en plus.

Cette thèse et ces contributions sont placées dans ce contexte avec le but de concevoir
des méthodes plus informées pour l’apprentissage de représentations. C’est pourquoi cette
thèse a les objectives suivants :

• Étudier l’utilisation de l’apprentissage auto supervisé pour la télédétection.

• Contribuer à réduire le besoin pour les annotations dans le processus d’apprentissage
de représentations d’images.

• Proposer des méthodes d’apprentissage de représentations adaptées aux spécificités
de la télédétection afin d’entrainer des encodeurs plus efficacement.

Nous contribuons à ces aspects de plusieurs façons. Nos contributions vont de la pro-
position d’améliorations à l’apprentissage auto supervisé en utilisant des outils tels que
le transport optimal à la proposition d’une méthodologie pour l’apprentissage de repré-
sentations multimodales avec des applications sur les jeux de données en télédétection de
la communauté. Dans la Section B.2, nous décrivons le contenu de ce manuscrit, chapitre
par chapitre.

B.2 Aperçu des contributions

Dans cette thèse, nous étudions l’apprentissage de représentations dans le contexte des
taches que l’on retrouve en télédétection, allant de la classification de scènes à la dé-
tection d’objets où segmentation sémantique. À cette fin, nous tirons parti des outils de
l’apprentissage machine tel que le transport optimal. Ce manuscrit est organisé de la façon
suivante :
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• Dans le chapitre 2, les notions requises pour la compréhension du document sont
présentées. Ainsi, les méthodes auto-supervisées de l’état de l’art sont présentées en
tant qu’introduction au domaine de l’apprentissage auto supervisé. Nous introdui-
sons également la théorie du transport optimal et ses aspects numériques. En plus
du transport optimal général, des variantes du transport optimal sont également
présentés tels que le transport optimal entropique, le transport optimal non ba-
lancé et les méthodes pour résoudre le problème du transport optimal entre espaces
incomparables.

• Le chapitre 3 introduit les travaux que nous avons réalisés afin de tirer parti du
transport optimal pour l’apprentissage auto supervisé. Nos contributions s’étalent
de la proposition d’une variante de l’apprentissage contrastif basé sur le plan de
transport entre échantillons dans une pipeline auto-supervisées à une méthode non
contrastive pour obtenir une distribution uniforme sur l’hypersphère qui peut être
utilisé comme l’un des deux objectifs nécessaire à l’apprentissage auto supervisé.
Nous présentons également une modification à l’apprentissage contrastif dense qui
fonctionne en modélisant chaque image comme une distribution de patches spécifi-
quement pour les tâches denses tels que la détection d’objets où la segmentation sé-
mantique. Tandis que certains des travaux présentés sont actuellement non publiés,
la Section 3.2 est basé sur la recherche qui est publié dans l’article de conférence
suivant :

"Spherical Sliced-Wasserstein", C. Bonet, P. Berg, N. Courty, F. Septier, L. Dru-
metz, and M.-T. Pham, in International Conference on Learning Representations,
2023.

• Le chapitre 4 est dédié au problème d’apprentissage de représentations multimodales
qui est souvent rencontrées dans le domaine de la télédétection. À ce titre, nous
proposons un protocole de pré entraînement contrastif de modèles sur des jeux de
données multimodaux. De plus, nous présentons une généralisation supervisée de
ce protocole qui nous permet d’améliorer le finetuning spécifique à la tâche par
rapport au finetuning par entropie croisée catégorique utilisée traditionnellement.
Ce chapitre est basé sur les publications suivantes :
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"Self-Supervised Learning for Scene Classication in Remote Sensing : Current
State of the Art and Perspectives", P. Berg, M.-T. Pham, and N. Courty, Remote
Sensing, vol. 14, 16, p. 3995, 2022.

"Joint Multi-Modal Self-Supervised Pretraining in Remote Sensing : Application
to Methane Source Classification", P. Berg, M.-T. Pham, and N. Courty, in
IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Sympo-
sium, IEEE, 2023, pp. 6624 - 6627.

"Multimodal Supervised Contrastive Learning in Remote Sensing Downstream
Tasks", P. Berg, B. Uzun, M.-T. Pham, and N. Courty, IEEE Geoscience and
Remote Sensing Letters, 2024.

• Le chapitre 5 est consacré au problème de classification sur des jeux de données
hiérarchiques. Dans de tels jeux de données, les labels de la vérité terrain peuvent
être organisés en une hiérarchie qui fournit une connaissance à priori intéressante
sur de tels jeux de données. En effet, en fonction de comment la hiérarchie est
construite, nous trouvons que les classes proches dans la hiérarchie exposent sou-
vent des caractéristiques visuels similaires qui peuvent aider dans la tâche de clas-
sification d’image. À cette fin, nous tirons parti des espaces hyperboliques qui sont
des manifolds non Riemannien avec des propriétés intéressantes pour projeter des
arbres et hiérarchies. Notre contribution est double. Dans un premier temps, nous
introduisons un classifieur hyperbolique basé sur les prototypes idéaux. Ensuite,
nous proposons une technique permettant d’utiliser l’information hiérarchique lors
de l’initialisation de notre classifieur. Le contenu de chapitre est le sujet de l’article
de conférence suivant :

"Horospherical Learning with Smart Prototypes", P. Berg, B. Michele, M.-T.
Pham, L. Chapel, and N. Courty, British Machine Vision Conference (BMVC)
2024.

• Dans le chapitre 6, nous résumons nos contributions et concluons le manuscrit en
discutant des potentielles perspectives futures dans la lignée de nos contributions.
Il s’agit du chapitre final de cette thèse.
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Titre : Contributions à l’apprentissage de représentations en vision par ordinateur et télédé-
tection

Mot clés : Apprentissage de représentation, Télédétection.

Résumé : L’apprentissage profond est de-
venu un outil incontournable pour la réso-
lution de tâches d’analyse d’images, notam-
ment dans le domaine de la télédétection. En
conséquence, les besoins en données anno-
tées ont considérablement augmenté. Cepen-
dant, l’annotation de données peut être coû-
teuse en temps et en moyens. Ainsi, tout un
champ de la littérature s’intéresse à l’appren-
tissage de représentations d’images en rédui-
sant la dépendance aux annotations par des
méthodes dites autosupervisées. Les repré-
sentations apprises sont ensuite exploitables
pour des tâches de vision grâce à leur na-
ture discriminante par rapport aux labels de
la tâche finale. Dans ce contexte, nous éva-
luons dans cette thèse comment ces mé-

thodes peuvent être exploitées dans le do-
maine de la télédétection en s’intéressant
à des tâches telles que la classification de
scène multimodale pour laquelle nous propo-
sons une méthode d’apprentissage autosu-
pervisé. Nous mettons à profit le problème du
transport optimal pour modéliser certains pro-
blèmes et proposer des contributions métho-
dologiques à l’apprentissage contrastif. Fina-
lement, nous proposons d’aller au-delà des
espaces Euclidiens pour l’apprentissage de
représentation en proposant une méthode de
classification dans les espaces hyperboliques.
Notre méthode qui est informée par la hiérar-
chie du jeu de données permet d’améliorer les
performances en classification hiérarchique.

Title: Contributions to Representation Learning in Computer Vision and Remote Sensing

Keywords: Representation Learning, Remote Sensing.

Abstract: Deep Learning has become an
ubiquitous tool for the resolution of image
analysis tasks, notably in the remote sens-
ing domain. As such, the need for anno-
tated data have largely increased. But, an-
notating data can be costly and time consum-
ing. Therefore, a whole field of the literature
is dedicated to image representation learn-
ing by decreasing the dependence to anno-
tations using so called self-supervised meth-
ods. The learnt representations are then us-
able in downstream tasks because of their
discriminative nature with respect to the la-
bels. In this context, we evaluate in this the-

sis how these methods can be exploited in
the remote sensing domain by investigating
tasks such as multi-modal scene classifica-
tion for which we propose a self-supervised
framework. We leverage the optimal trans-
port problem to model several problems et
propose new methodological contributions to
contrastive learning. Finally, we propose to
go beyond Euclidean spaces for representa-
tion learning by proposing a new classifica-
tion method in hyperbolic spaces. Our method
which is hierarchically-informed improves the
performance in hierarchical classification.
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